Der Text ist zu lang für einen Post, da nur nur 60.000 Zeichen erlaubt sind. Ich kopiere ihn daher in zwei Teilen hier herein.
Teil 1:
<?xml version="1.0" encoding="utf-8" ?>
<svg baseProfile="full" height="308.0" preserveAspectRatio="none" version="1.1" viewBox="0 0 891 308.0" width="891" xmlns="
http://www.w3.org/2000/svg" xmlns:ev="
http://www.w3.org/2001/xml-events" xmlns:xlink="
http://www.w3.org/1999/xlink"><defs /><svg class="graph" height="215.0" width="711" x="0" y="0"><defs /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="601" y="80.0"><title>reactivity
linear:
scale=2.993250
scale offset=0.000000
w=2.187468
bias=-0.0422</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="646.0" y="101.5">reactivity</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="689" y="89.0">0</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="603" y="89.0">out</text><line stroke="#1E1E1E" x1="571" x2="601" y1="97.5" y2="97.5" /><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="481" y="80.0"><title>multiply</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="526.0" y="101.5">multiply</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="569" y="89.0">1</text><line stroke="#1E1E1E" x1="451" x2="481" y1="67.5" y2="88.5" /><line stroke="#1E1E1E" x1="451" x2="481" y1="127.5" y2="106.5" /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="361" y="50.0"><title>base
categorical with 4 values
bias=0.5094</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="406.0" y="71.5">base</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="449" y="59.0">2</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="363" y="59.0">cat</text><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="361" y="110.0"><title>gaussian</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="406.0" y="131.5">gaussian</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="449" y="119.0">3</text><line stroke="#1E1E1E" x1="331" x2="361" y1="67.5" y2="118.5" /><line stroke="#1E1E1E" x1="331" x2="361" y1="127.5" y2="136.5" /><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="241" y="50.0"><title>add</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="286.0" y="71.5">add</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="329" y="59.0">4</text><line stroke="#1E1E1E" x1="211" x2="241" y1="37.5" y2="58.5" /><line stroke="#1E1E1E" x1="211" x2="241" y1="97.5" y2="76.5" /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="121" y="20.0"><title>loop
categorical with 7 values
bias=0.4121</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="166.0" y="41.5">loop</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="209" y="29.0">5</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="123" y="29.0">cat</text><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="121" y="80.0"><title>base_right_motif
categorical with 16 values
bias=0.4121</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="166.0" y="101.5">base_rig..</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="209" y="89.0">6</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="123" y="89.0">cat</text><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="241" y="110.0"><title>squared</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="286.0" y="131.5">squared</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="329" y="119.0">7</text><line stroke="#1E1E1E" x1="211" x2="241" y1="157.5" y2="127.5" /><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="121" y="140.0"><title>gaussian</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="166.0" y="161.5">gaussian</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="209" y="149.0">8</text><line stroke="#1E1E1E" x1="91" x2="121" y1="67.5" y2="148.5" /><line stroke="#1E1E1E" x1="91" x2="121" y1="127.5" y2="166.5" /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="1" y="50.0"><title>loop_right_motif
categorical with 18 values
bias=0.2478</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="46.0" y="71.5">loop_rig..</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="89" y="59.0">9</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="3" y="59.0">cat</text><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="1" y="110.0"><title>loop
categorical with 7 values
bias=-0.3912</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="46.0" y="131.5">loop</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="89" y="119.0">10</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="3" y="119.0">cat</text></svg><svg class="summary" height="64" width="180" x="711" y="0"><defs /><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="0" y="14">Training Metrics</text><line stroke="#1E1E1E" x1="0" x2="160" y1="19" y2="19" /><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="5" y="34">R2</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="end" x="155" y="34">0.487</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="5" y="49">RMSE</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="end" x="155" y="49">0.292</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="5" y="64">MAE</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="end" x="155" y="64">0.187</text></svg><svg class="h_space" height="19" width="50" x="0" y="215.0"><defs /><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="0" y="14">Inputs</text><line stroke="#1E1E1E" x1="0" x2="50" y1="19" y2="19" /></svg><svg class="table" height="69" width="135" x="0" y="234.0"><defs /><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="16">base</text><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="32"><tspan font-weight="bold">base_rig</tspan><tspan>ht_motif</tspan></text><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="48">loop</text><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="64"><tspan font-weight="bold">loop_rig</tspan><tspan>ht_motif</tspan></text></svg></svg><h4 style='font-family:monospace; margin-bottom:5px; font-weight: normal; text-decoration: underline '>Training Metrics</h4><img style='width:auto' src='