Code-Anpassungen für PyCharm

Wenn du dir nicht sicher bist, in welchem der anderen Foren du die Frage stellen sollst, dann bist du hier im Forum für allgemeine Fragen sicher richtig.
Antworten
Hamster1988
User
Beiträge: 5
Registriert: Mittwoch 29. März 2023, 13:13

Hallo zusammen,

ich kenne mich mit Python nicht sonderlich gut aus, daher hoffe, ich dass ihr mir unkompliziert weiterhelfen könnt.

Ich nutze abzus "feyn"-Paket für Python und folge diesem Tutorial: https://docs.abzu.ai/docs/tutorials/pyt ... _mrna.html

Das Problem ist, dass der Tutorial-Code offenbar nicht für die Benutzung mit PyCharm geschrieben wurde. Z.B. steht im Tutorial

Code: Alles auswählen

data.head()
, was aber kein Resultat ausgibt. Nach etwas Googlen bin ich dann darauf gestoßen, dass PyCharm

Code: Alles auswählen

print(data.head())
verlangt.

So weit so gut so einfach. Mein wahres Problem kommt aber, wenn ich das Modell sehen möchte.

Code: Alles auswählen

models = ql.auto_run(train[features+[output]], output, stypes=stypes, criterion='bic')

model_base = models[0]
model_base.plot(train)
An dieser Stelle macht Python dann ein neues Fenster auf, in dem aber nichts zu sehen ist. Nach ca. 30 Sekunden schließt das Fenster. Wenn ich die letzte Zeile manuell ausführe passiert dasselbe und in der Konsole erscheint Text, den ich aus platzgründen hier nicht komplett hereinkopieren werde, bei dem es sich aber anscheinend um Anweisungen an Python zur Erstellung des Bildes handelt.

Meine Frage an die Community ist damit: Wie muss ich den Code anpassen, damit PyCharm das Bild des Modells anzeigt?

Meine Google-Suche hat leider nichts ergeben, was ich verwenden/ verstehen konnte.

Besten Dank und hoffentlich bis bald!
Sirius3
User
Beiträge: 18274
Registriert: Sonntag 21. Oktober 2012, 17:20

Der Text, den Du für unsinnig hältst, ist für uns aber wichtig, weil er die Fehlermeldung enthält, warum sich das Fenster sofort wieder schließt.
Ohne den kompletten Traceback kann man Dir schlecht helfen, es ist im Forum genug Platz da.
Hamster1988
User
Beiträge: 5
Registriert: Mittwoch 29. März 2023, 13:13

Der Text ist zu lang für einen Post, da nur nur 60.000 Zeichen erlaubt sind. Ich kopiere ihn daher in zwei Teilen hier herein.

Teil 1:

<?xml version="1.0" encoding="utf-8" ?>
<svg baseProfile="full" height="308.0" preserveAspectRatio="none" version="1.1" viewBox="0 0 891 308.0" width="891" xmlns="http://www.w3.org/2000/svg" xmlns:ev="http://www.w3.org/2001/xml-events" xmlns:xlink="http://www.w3.org/1999/xlink"><defs /><svg class="graph" height="215.0" width="711" x="0" y="0"><defs /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="601" y="80.0"><title>reactivity
linear:
scale=2.993250
scale offset=0.000000
w=2.187468
bias=-0.0422</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="646.0" y="101.5">reactivity</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="689" y="89.0">0</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="603" y="89.0">out</text><line stroke="#1E1E1E" x1="571" x2="601" y1="97.5" y2="97.5" /><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="481" y="80.0"><title>multiply</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="526.0" y="101.5">multiply</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="569" y="89.0">1</text><line stroke="#1E1E1E" x1="451" x2="481" y1="67.5" y2="88.5" /><line stroke="#1E1E1E" x1="451" x2="481" y1="127.5" y2="106.5" /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="361" y="50.0"><title>base
categorical with 4 values
bias=0.5094</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="406.0" y="71.5">base</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="449" y="59.0">2</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="363" y="59.0">cat</text><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="361" y="110.0"><title>gaussian</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="406.0" y="131.5">gaussian</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="449" y="119.0">3</text><line stroke="#1E1E1E" x1="331" x2="361" y1="67.5" y2="118.5" /><line stroke="#1E1E1E" x1="331" x2="361" y1="127.5" y2="136.5" /><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="241" y="50.0"><title>add</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="286.0" y="71.5">add</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="329" y="59.0">4</text><line stroke="#1E1E1E" x1="211" x2="241" y1="37.5" y2="58.5" /><line stroke="#1E1E1E" x1="211" x2="241" y1="97.5" y2="76.5" /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="121" y="20.0"><title>loop
categorical with 7 values
bias=0.4121</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="166.0" y="41.5">loop</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="209" y="29.0">5</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="123" y="29.0">cat</text><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="121" y="80.0"><title>base_right_motif
categorical with 16 values
bias=0.4121</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="166.0" y="101.5">base_rig..</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="209" y="89.0">6</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="123" y="89.0">cat</text><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="241" y="110.0"><title>squared</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="286.0" y="131.5">squared</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="329" y="119.0">7</text><line stroke="#1E1E1E" x1="211" x2="241" y1="157.5" y2="127.5" /><rect class="node" fill="#FAFAFA" height="35" stroke="#FF1EC8" stroke-width="1" width="90" x="121" y="140.0"><title>gaussian</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="166.0" y="161.5">gaussian</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="209" y="149.0">8</text><line stroke="#1E1E1E" x1="91" x2="121" y1="67.5" y2="148.5" /><line stroke="#1E1E1E" x1="91" x2="121" y1="127.5" y2="166.5" /><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="1" y="50.0"><title>loop_right_motif
categorical with 18 values
bias=0.2478</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="46.0" y="71.5">loop_rig..</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="89" y="59.0">9</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="3" y="59.0">cat</text><rect class="node" fill="#00F082" height="35" stroke="#1E1E1E" stroke-width="1" width="90" x="1" y="110.0"><title>loop
categorical with 7 values
bias=-0.3912</title></rect><text fill="#1E1E1E" font-family="monospace" font-size="12" style="pointer-events:none" text-anchor="middle" x="46.0" y="131.5">loop</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="end" x="89" y="119.0">10</text><text fill="#1E1E1E" font-family="monospace" font-size="10" style="pointer-events:none" text-anchor="start" x="3" y="119.0">cat</text></svg><svg class="summary" height="64" width="180" x="711" y="0"><defs /><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="0" y="14">Training Metrics</text><line stroke="#1E1E1E" x1="0" x2="160" y1="19" y2="19" /><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="5" y="34">R2</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="end" x="155" y="34">0.487</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="5" y="49">RMSE</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="end" x="155" y="49">0.292</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="5" y="64">MAE</text><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="end" x="155" y="64">0.187</text></svg><svg class="h_space" height="19" width="50" x="0" y="215.0"><defs /><text fill="#1E1E1E" font-family="monospace" font-size="14" text-anchor="start" x="0" y="14">Inputs</text><line stroke="#1E1E1E" x1="0" x2="50" y1="19" y2="19" /></svg><svg class="table" height="69" width="135" x="0" y="234.0"><defs /><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="16">base</text><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="32"><tspan font-weight="bold">base_rig</tspan><tspan>ht_motif</tspan></text><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="48">loop</text><text fill="#1E1E1E" font-family="monospace" font-size="12" text-anchor="start" x="5" y="64"><tspan font-weight="bold">loop_rig</tspan><tspan>ht_motif</tspan></text></svg></svg><h4 style='font-family:monospace; margin-bottom:5px; font-weight: normal; text-decoration: underline '>Training Metrics</h4><img style='width:auto' src='
Hamster1988
User
Beiträge: 5
Registriert: Mittwoch 29. März 2023, 13:13

Teil 2:

Bcnx759FZDLAScnYOhQiUXvGU1ON4/VApA2bdrg559/xldffYWbN28CAIYPH44XX3wRvr6+1noaQhyWSsVi585ybN1ahlatnDB7tieYqgwsJo5PxYI5V6JOm3soH8q1TcA+7gnl3GDAx0n9R+Dr64vx48fbuxjEDsyp+NZECz5fcMDhejDGjHFFcnIZ9u7NMbrOR2Kih8XZmHx9BQY9I9oCAqrWGGGscm8M15qv/15wc1FqYp2KyuZWGMN9HtYuj7EgID9fhbg4idEAIyVFit27KzTBikIB7NpVAZaF2WvB0OR081j1Lunr64s33njDmqckpNZYt64Uhw9XYPRoF8THu9KQqzpKsCUbgvUPwTyQgw1xhmp8ANim/6050YR/7QnySHFxMRYsWFAj64AQx2Buz0ZNtBSbSqmrPU+DO8b4Oh8eWLOGv6fO2FwOmYw12csxcaKbRa+Fw1e5N4VrzV+7toR3/yeflFQrwOMLLKvyWTIMjL7H1WUsCPDxEfAGGFFRIqNZsABoHmNOT52lw7jqq/o5NoAQK1Kp1Feop58WY8ECT4wd60bBR12SI4fgyyzg3/8mUjKAqpcXFDsiofipNVTTGwONKbmAuSoqKrBr1y57F4PUIHNbwy2Z8GsuUyl1uXkaXJn4mNNyn5XFP7SrqIhFYqIHIiKEEArVQ72EQiAiwnCiNpcta/DgHAwenIMJE/KMTlK2JE2wUPioUlxUxP+gwkLzx4JpT+TmsnvxTa429Vka6/nx96+5KqixDFXaAQFgXhYsjrm9O1WZqF8f1fg4gezsbHTp0gV37typ6acixKZYlsX335fj/HkZFi3yQmQkrWheZ5SrwBzj1usoAgQMWC8h2CYSdfYqwisjIwONGzcGwzDIyMjgPSY3N9fGpSJVUZ25A+a2hle1pdhU2fhavrXLYE5yNK6slr4HLGt60rh2+fWHUGVlqXhb1S3NnBQa+mj4VXXpl5ObU8NXETf1WV6/LtdZCJLTo0fNNdwYW3MlKam40ixYxr4/xh5j7Pkp4DDNJgOV2erMvCLEARUXq7BqVQnOn5dh5EgXexeHWIOKBeQsIBZAsOI+hF9lQRXjBtV7IVAN9Hm0Zgcxqnv37rhw4QL8/PzQvXt33jlQLMvS3CgbqWoQUd3J4d7eAt4J4D4+ui3eVVn5urKy8a26DajnX0yc6IakpGKozEhG5eLCGH0ef3/+12fuHI8NG4yn49We/2JqPosxMTHqhrDkZOM9OE5mXspMlZPDVcRNfZbGznP6tAwTJphXFnPwfd/1h3h5e/MnJ+C+m9z3pzKV9dTZavJ/bVatO+pHH32EyZMnw8XFBR999BHvMaWlpXSzIXXKjRtyfPBBMcrKWMyb54kuXWj4Ta32TzkEe/Ig+CEPqsmBUI0LgGq8P1Qv+AHhNKfDEgcPHtRJOrJ161aDjFd5eXkYO3asrYtW71QniKju5HBjt/y8PBVGjMjRqZBV1lKsX5ErLWV5x+gnJRUDKEZQkBBxcRL88YecN6hRqcyr0HPDl/jeg0mT3HgrqebO8TCVjvfevUet6uYEAPouXpRj/Hh1L5QxTZoIzaogm5M2WLsibuyzNHYeY0PZTDFWbmPfd3//UhQUqDTHlpTwP6dUWnlDubk9dTWV3a2uqVYAcvjwYbz00ktwcXHBqlWrEBkZCaFQNyKkxaBIXZOaqoSPjwDLlnkgIICyWtRWzIlCCFffB3O1HKy3EKqBPlB1+i8tZxDdJKqiVatWOv+OioqCn5+fzrbs7GzqFbeB6gQR1Z0cnp/PX8lTKNT/1U/RaqwizFeRM/bV4daaSE1VTyo3NuY+JESoM+ncEtqt/dqpWkUiy1O1GqNdharKuiHaQ4mMvc5//lFapYJs68nVpir2xiaPc+9hZZnDuICTL4kBwwCengzKylizUvPaa32W2qZaAcihQ4d0/p2cnGxws8nKykLXrl2r8zSE2F1JiQopKTI8/bQETz0lRp8+YppoXtuUq8AcLQAaO4Pt5A6wABsshjKhEdienoAz5eSwprNnzxrcDwBAIpHgmWeesUOJ6pfqBBHVTSNa2Th6rkK2cWMpsrJURivClmZ/0j63scqesSFa5uDeA2OpWrlMSoDpITgBAQKjrf/VbbPVX1CPj7GJ2Bs3luqU2cUFKC83fLxAoA6UzE1PbC2mKvaVTdQ3Z04HYPx3U1jImvy8tdE6IOax2h23e/fucHY2HIrCMAy1dpFa7dYtBaZNK8AXX5QiN1cJhqFVzWsNJQsmpQjC2Xfh9NglOL1xF8yJQgAA29sLyk+agH3Km4KPGtCwYUPe7R4eHpSC1waqk2HKWAYhc1u69R/Ph2WhE3xw24BHaW4tyf6kf25jlT1174VEkw3LXNrvQWVZvriW+rt31dmiuPU3UlKklU4O5yaRA1VbNyQwUP2YyoICvgpyVpZKJ8MVX/ABAH5+Anz/vR/WrPGxaYu+qYo93/fdUps2lZg8j7lZsKqb3W3TphKMGKHOjjZiRA42beJPp1zbWe2u+80338DT09Ngu7e3N7Zv326tpyHEZliWxf795Zg5swAeHgJ89JE3GjSgIVe1gkzdush8lwuncbfA/F4K1cRAyH9qDdWsIDsXjpCaV50gwtw0otopWhMS8jWVa/3Hi3gSBGqvSq0vK0tlNLWrOUxV9rjeC0t6GrgFDLn3oLIWbmPrhHzySQmWLCk2ObRK+/OpyrohZ8/KzQp0zKlkG5Obq+L93PmY2ufpyRj9DvExVbE3J+itzP79Fby/Gz6mgtzq/PY2bSrB7t0VmiGFcrl6DZK6GITUeLOfSCTCY489VtNPQ4jVHT0qxWeflaJ/fwmSkrzQsCEFHw4tSw7BF5lwGvI3BIvTAQBsf28ovouC4lgrqF5vBITS+FtbOXfuHM6cOaP592effYa4uDi8++67KCmpezdTR1PdtQhiY8VYs8bHaEs318rPtyYEh6vEenurqxr6FTJT60BwqV2rUqk0Vdnjei/MwR33zjseOu+BqYpwSorU6PAqbhiPfuWeYdRrhYwcKUFycpmmMg4AiYke5hVWy9KlxfjgA9OT7c2pZBujVIK3d4ePqWxcCgVb6XdIm6mKPdezxWX44v5ryWuUyfh/N/7+Aot6NKrz2/vhB8N0xQCwdy//9tqsWnNAzp07Z/axNA+E1BZlZSq4ugrw5JNi+PgI0LkzZblyaFfLIFx+H8yvRYCQAdvbC2wfb/U+byewHSh9rj0sWrQIr776KgDg119/RVJSEsaMGYMzZ85g4cKF+PDDD+1cwrqvJtciMDUMSX/dB67F399fgNxcFQQCQKUyXSnUT+165475XRbalT39uRhpaaYXKvT3F8DNjTGZFtjYmhcdOogqTeFqbH2SDh1E2LWLb7VtdUXWnLUptM9XWQ9PYqKHTsrc0lIW2dmqKg15A4yvrm4qG1dZmfFFAfnOxZfqt0MHEZKTy/DBB8U6r5n7f39/AfLzVZrXWFnmLf0sbYDh5HdzejSq+tsz9rlxCRzqkmrdmUePHq35f+1Uu9ycD+1ttBAhcXQsy+LIESm++qoUH37ohdBQJwo+HJGSBXO2GJCyYHt7Ac4MUK6EcmEo2AHegBcFHI7g1q1biI6OBgCcOHECQ4cOxaJFi/DHH39g0qRJdi5d3WaNNQgqO4exYUj37ilNBgtKpTr4YFnjWZ60exO4MnATt82ZPP7BB8UICSlDTIxIM1m8sixaXPknTnQzWAgwISHf4H3gW/OCL4MS32vj288FbHyVcWMBT3UkJ6vfn9xcFe/nZelzGFtd3VQ2LoB/Loq5C/zpBwb652EYwM2NwaZNfjrHm6LdE8MlQ6jqejW0Dohp1bpTX7p0SfP/e/bswY4dOzBz5ky0aNECAHD9+nWsXLkSo0aNql4pCalh5eUs1q4twS+/SDFggISGWzmiG+UQ7MmFYG8+mEw5VL08oeztBTR3gXJ7lL1LR/RIJBIUFRUBAC5cuICXXnoJANCgQQMaglWDrLEGgTnnMJYpSyAw3orLtT7zzTPQr1zHxIh0yqDdi5Kfr4KPj+lMUnfvKjUVX0uyaG3cWIrr1+W4eFGOtDSlzmvhex+Sk9WV0uTkMpO9K4B6zgOX7tUc2ml/9SvAAQECnDsnN/tc+rTfH30CARAWpv58zVm00RRzF/bjWDJZu7KAr6qZp4z1xJj7ParOb9DYd8TLq+4lvqlWAKI96fyTTz7Bl19+qZMHvmHDhvDz88OECRPwwgsvVOepCKkxaWkKLF5cjNxcFWbN8kDPntRK4TAULODEgPm9BE6jb4L1EUI1yBfscF+w7WyTe55UTY8ePTB9+nS0aNECf//9Nx5//HEAwI0bNxASEmLn0tVd5qxBUFnrrDnnMNYqX5UKq1Cozv5kqjfBWIt2UlKxZsKuJc8nEID3cVlZKp3hY9pMDTMzZ22RVq2ccPas+YWtbJG/TZtKsHdvRY0MzxkzxrLAAQBvT1FsrBieniVmB16WZFszN0saN6yqtNTy4A+oPKDQ/z2VlRkulmnuOiAJCe687/uUKe5ml722sNpYhdLSUuTm5hpsz8vLQ1mZ8UlIhNibWMzAx0eAOXM8EBxMw3fsrlQJ5mgBBHvyAADKr5qDbe8GxfqmYHt4UMrcWmLRokVYsWIFMjIy8PHHH6NBgwYAgKtXr2LEiBF2Ll3dVVmGJnNaZ02dQ39YFADNGPsxY1yxYUOpRQvoMYw6+Fizxkdne1JScaXDc9TltaySzDBAgwbGe08qw7LAnTumh5kZa5U3J/jQD+hKSljeeQkAMGGCOyZMUFdMTQ1HspRKZXryuDFcj5j+d6q83LICcSvAV1ZZr2x4F/AoyLR08Unt4K+ytMvaAYOx59H/DZpqAAgIEGjm4wQECAyGBdYVVqttjRw5Eq+//jrGjBmD5s2bAwD++ecfbNu2jYZgEYdTUcEiObkMo0a5ICBAiKVLvexdJJIpgzDpPpgfC8CUqaDq7A7VCF/1vv8ml5Paw8vLCwsXLjTYPn36dNsXph6pbBFBY4v7LV1ajLAw9XwDYwsJyuW6lS2uEi8Uqs9z/brc4uBDu5Lt4yNARQVbaWu5doW8skUP9XHrXdQUrjfHkknzHGdndfnk8kdD2XJyVGYN4+GGaXGLO1ZXVVaLN9bib06goC07W2XWkCVLh3dVRv93ce+eEgkJ+bxD67iAgguWzDk3N6/JWAMAAIPXo/1Z1rV5JVYLQN577z1ERETgu+++w9atWwEAYWFhmDlzJuLj4631NIRUW1qaAkuXFiMzU4mOHUVo144mmtvN32VgbleAHewLuAnB3CyH6pVAqIb6AiG198JKiL0YGxrFDWsxNmxFuzIUFyexqMKoVKofa2mlVb+SbU7FmWvRrmpZaxrXmzNiRI7FQ8NkskeZwbi5J5YO4zF3on5N43qKRozIqdIQMXOHLFkTl6WNe++5uUTGmJqHpK2yRSwB42vHaO+r7twuR2O1AEQgEOCll17STDQkxBGdOFGBtWtLEBgoxKpV3ggNpSFXNvdQBsG+fAj25IK5UQE2xBmKAT6AuxCKvS3tXTpiJSqVChs2bMC3336L9PR0HDt2DKGhoUhKSkJkZCSGDRtm7yLWSZVl7DHVY8BVco8dM72IHZ+qVHj1K9lVeb7Tp2WWP7gGcYGepT0znMqydOlPqtZuFTfnHLZmaRDGqWwCuTkZrSzl5sYAMH94nrnHOTkBQ4ZIEBsr5h1aWNm5srNVZs3Lqm2sWvtiWRZ//fUX7t27h759+8LV1RVFRUWQSCRwdjavlXnNmjXYt28f7t27Bw8PD/Tq1Qtvv/02fH19rVlUUg+lpSmwalUJevYUY8oUd0gkdS+rhMNSsYCAAXLlcOp5RT2kqo8XlG8GgX3cExDSZ1HXrF69Gnv37sXkyZOxYMECzfaQkBBs2bKFAhArMzU8QzuVrLe3wGQqV5aFRZmazOXkVDNrGVi7xT8gQIAePZxx+rSsWkOZaiJ1LsOoW925z5JrgXeEHg9rqywbljkpjy2Vnq6scsBkikKhTrPcooXI4uFogPo1Vja3qzay2mzO9PR0DBgwAHFxcZg2bRpycnIAAHPnzsXixYvNPs/Fixfxv//9D/v378fnn3+Oy5cvY8qUKdYqJqmHMjOVUKlYhIQ4YfVqb7zxBgUfNqFkwZwqgvDNu3Aa8Lc6CGkggvKTJlCcbQPlmibqeR0i+izqol27diEpKQnx8fEQCh9VJDp27IgbN27YsWR1j7FVyTdtKkF8fC6WLCnWrFytnc7WlmpyITVrVUK54U+nTsl05rcILHiruInJfKthV7ds3DA17nPWT2tcl1SWDcvcDFiWMDf9r6X013SxlECg7lGzZDX22sBqV6C5c+eiTZs2uHr1KlxcXDTbR4wYgZMnT5p9ni+//BJxcXFo1qwZYmJiMG3aNKSkpGjyyRNiiV9+kSIhoQAHDqjTJTZp4qSzQCapARUqCJamw+nxK3AafwvM5VKohvkAcvXdgu3rDXjS0Le6Ljc3F4GBgQbbFQoFVNVdXIDoMDaufPfuCqO9GW5uDOLiJFV+Tke6jFqrLFwFX3siPbdworn0s3StWeOD77/3w5o1PtCqGpnN05PRBDABAYI62dtRFUFB1q94jxnjWmOBufaaLpZSqdQ9alwgA5i3Grujs9o7feHCBUyZMkUn+ACAJk2aICMjo8rntXQIFyEAIJOxWLeuBElJxejSxRl9+tTOMZK1xkMZmN3/peEWM2D+KIWqvzcUu6OgONIKqtcaAWJKn1ufxMTEYMeOHQbbv/jiC3Ts2NEOJXJM3PCoESNykJCQj5QUy+dfVKU1+N49pcXzJwQCICJCiLg4iUNVgrUrZvbm6soY/TxlVZiu0qCBAN9/74cxY1yRlaVyqPe9pnG9SXxiYkRWf77YWDEmTXKz+nk5XG8Fl77aEnw9aomJHrV2/gdgxTkgYrEYBQUFBtvv3LkDHx8fwweYobS0FOvWrcO4ceMgkRi21EilUsiM/KJp7ZH6q7hYhTlzCnHvnhJTprihf38J9XrUhBIlmB/V63UwZ4oBZwaKJzwBPxGUO2hl8vpuzpw5iI+PR0pKCmQyGRYvXozbt28jNzcXycnJ9i6eQ7DGquVA1SY8K5WWp6P18xMgPV3pUOPOvbwYTJnibrX0s9VVWMiisFD9/uh/nsZWiDclPV2JTZtKjC6OWFWWrspeVc7OVQu8ANPzGy5eND5ZIyCgauu8pKRIERsrRlycHPv2VVh9PggXNE2c6FalCfR8i1HWZlZrkhw0aBAWLFiAO3fugGEYKJVKXLx4EQsWLMDgwYMtPp9CocDUqVMRGBiIWbNm8R6zbt06REdH8/7R2iP1l7s7g1atRFi+3BsDBrhQ8GFNXA1HxcKp3zU4zU4FlCyUS0KhONsW8LN+qxSpnVq1aoWff/4ZPXv2RN++fcEwDAYPHoyffvoJLVtStjOg8gXOzMUNz6hpWVkqyOVVz2xUVQyjnovBRyxmEBsrhqur413nq/p5anN1ZawefACwaFXwqhIIgMaNqz5UytT8Bu2sX/omTqxaL0ZSUjGGDcvB7t3mBx+WDM7hgiauNyMiQt2bERGh7s2ob6zWA/LOO+/g3XffRe/evcGyLPr27QuWZTF8+HCjAYQxKpUKM2bMQFZWFpKTk40Ov3rttdcwceJE3n3Xrl2jIKQekctZfPllKTp0cEbnzs545RV3exep7mBZ4Fo5BHvyIPixAIq9LQAvJyiXhIJt7gI0puGRhJ+3tzemTZtmsP3evXsIDQ212vPcvHkTK1aswJ9//omHDx9i3bp1GDRokNXOX1OMZbbh1k8wd7ExLvVuUlKxzYMDW2BZGO09yM9XISVF6lBrgWjTzlQkEFg2nwRQL9JYE6rSG2MplUrdC1RVpaXGV4E3lU3q+vWq/Qiq8tuxpHdHf36Q4e/aummFHZ3VekAkEglWrFiBU6dO4YsvvsD69evxyy+/YOXKlbzDp4xhWRazZ8/GrVu3sGXLFnh4GI8KxWIxPDw8eP9cXWvvxBximcxMJWbPLsTBgxXIz7d/F3xdIvgiE04D/4Zo2HUIfsiDqq8XIPtvMnlPLwo+CC+lUombN28iNTVVZ3taWhpmzZqFPn36WPX5ysrKEBoainnz5ln1vDWNL7MNRzublTnzQurS0AxzcWlprb0ehLVxLfmhoZb3BtgiUKhJ1emZy85WGf0dmMomtX+/9XuMrMHHx3SV29gEeE9Px+vdswarBSB//PEHrl69iuDgYPTp0wd9+vRBSEiIxedJTExESkoKVq9eDZlMhqysLGRlZUFZ23+FpEacPSvF1KkFKCpSISnJC08/XfWsLgTqeR3f52oyVjF/lIKNdIFiQ1Mofm0D1dwQwJ+GWRHj7t69i759+6Jfv3548sknMXv2bMhkMixcuBC9e/dGeno61qxZY9XnbN++Pd59991a0euhrbKhU5YM4anK5PXajnvvHH2UbYcO6mtmVVKw1mf6Wd20fwemAu6qzjmxN2MT4IuK2Dr5+7baEKz//e9/WLJkCVq3bl2t83CTE59++mmd7adPn65SQEPqLoWCxVdflaFNGxGmT3eHuztlWaoSBQvm1yIIfsgD82MBIGWhDBWD7egO5ZoIx7+7E4eydOlSBAQEYM6cOThw4AC+++475Ofnw8vLCwcPHkTz5s3tXcRaRX+xMb4FBwFYtRegKkOF7CU31/EzQ+3bp16EjpvgXBNzOuqDe/dqd0M0N1zQ2IKhpmzcWGpwXFXP5SisFoAUFhZa5cai32VPiL7sbCWUSqBhQyGWLfOClxdDE80tpdV0KHz5FgS/FoNtJoEqoRFUQ30fDa2i95VY6Pfff8eXX36JNm3a4LHHHsPu3bvRq1cvxMfH27toABwre2JycuXPp73YmLGsWdZeH6K2BB9A7RiiJJdzAaJjDxVzdNqJCGpbj4D2cEFjWe9MXQ/0s3pZK4OePVktAOnSpQvOnDlj1YmFhOj77TcZVq4sRqtWIsyd6wlvb+r1sMh9GQR78yDYkwfFinCgtStUrzaEclYQ0NqFAg5SbTk5OWjUqBEAwM3NDa6uroiNjbVzqR5Zt24dVq9ebe9iAADS0iqvPbOseiIy19rJlzUrO9v6vQBxcRJqqScORTvY3Lix1H4FqQLt4YJ8We9iY8UW9fCYyqBX7wKQcePGYenSpXj48CE6deoET09Pnf1t2rSx1lORekipZLFlSxl27ixH584iTJtGWa4swRzKh+CbbDDnSgAxA/Ypb0CkDjbYx+pf+j9Ss3766SdNAhGVSoVTp07h77//1jlmwIAB9iiaQ2VPFAjMa8HPyVFhyZJiCIWGvRx8FZvqCggQ4NSpWjqQntRZ2pP4a2LNF6GwZnvU+IYLag+xNNXz6KRXWzeWQc+R1uipjNUCEO6CvmrVKoN9DMPgzp071noqUs+wLItFi4rw++9yvPSSK+LiXCAQUEu9SQoWzOkisNGugJ8IzF+lAMNAuSwM7NPegEfVc7MTUpnZs2fr/Hvu3Lk6/7bnPUEsFkMs5m8htHX2RHOHOnGtm9zcDO2KB8Oos+dYs0Lm5cXgn39qT0WG1A9jxtTs77Mmgw9Tv19T651w9IMNvsVHzT2Xo7BaAHL69GlrnYoQDZZlwTAMnn5agmeecUXr1pSBySiWBa6WQ7AnF4J9+WByFVAsCgX7nB9UbwXR8CpiE3fv3rX5c8pkMvzzzz+af6enp+Pq1avw9/dHQECAzctjrpAQ42sZ6OPWwuBr9Xz8cWfs2mW94VIUfBBH5+8vQHZ27ZmsxLKGwQe3PTdXVemcFv0UzvHxrjpzQLj/1nSQZk1WG0AfHBxs8o8QSyiVLLZuLcVHH5WAZVl06yam4KMSgiUZEA2/DsH+fKiG+kK+pwXY0Q3UOyn4IHVYZmYmBg4ciIEDBwIAlixZgoEDB+Kbb76xc8lMM5aW1dOT4f3J8vWYCASwavBBiKPSnvdhLGWtI3NzYxAXZ7hUQFERW2kWu5gY3foPt5p6eLh6NfXwcPVq6rVl/gdgpR6Qffv24ejRo5DL5ejevTteeOEFa5yW1FP5+SokJRXjyhU5nn++9kTzNlWsBHM4H4I9eVDF+4Ed5AvVMF+wPTzAdvcEnCjgIPVHSEhIrcygyK1gvm1bGdLTlQgOFmpaMPlaN/nUpoxVhFRHVpYKmzaVYMKE2jkHtKyMxcWLVVul/ehRKcaP133d/Kup1x7VDkC2bNmCefPmoXv37pBIJFiwYAFSU1Px7rvvWqN8pJ756y8ZkpLUN95FizzRti2ttK2NuVgCwdfZYI4VADIWbDcPwPu/n3G0Kxw8HT4hRI+xSoR+YHLvnrJWpJwlpCZxmdlqY4Y2hUI9ebwquMUIzQ04asMaIdUOQL7++mvMmzcP48ePBwAcP34cU6ZMoQCEVMmFC3KEhTlh5kwP+PhQil2wLJgrZWDdhUCEBLhZAeafcqimNYJqiC/QiAI0QmozYxUF/cBk/Pi8WjXmnVSPNbOa1TW1MfgAAGdnoHFj8+d96TM3xW5tWSOk2gHIvXv38NRTT2n+3bt3byiVSmRmZiIwMLC6pyf1QEGBCtevy/HYY2K8+KIrGAYQCuv5EKIMKQQ/5EPwQy6Y21IoX/KHak4I2GcbQDG6Ac3pIKQO4CoKnLt31RWFuDi5wTAT+snXLxR81D1DhkjAsqhyAGJuit3askZItZuY5XI5XFxcNP9mGAYikQhSae1apZLYx5UrckydWoDPPiuFVMrCyYmp98EHsyMHop5XIfj0IdjWrlBsagbV2/8lchAyVBMhpI4wtvLx7t0VBllxcnOp94OQ2qJrVxGc/xug4OwMjBwpwfjx7jh2jL9u7GzGYAZzU+zWljVCqt0DwrIspk+fDmetd08qleLtt9/WCUy++OKL6j4VqUNUKhY7d5Zj69YytGrlhFmzPCAW18OKtZwFc7IQgj15YKNdoXqlIdhYDyiS/luvw6325PQmhFjG1HjwjRtLdVorzV20kBBif1lZKuze7WewvaiIv2tLZsa6n+am2K0ta4RUOwB55plnDLaNGDGiuqcldVxychm2by/HqFEueP551/rX63G3AoLN2RDszweTpwAbJYHqSS/1vmAx2GDH6SYlhNQMHx/jCwhmZak0k05TUqSQVy15DiHEDu7cUWLw4BwA6hXWhw2TVDt7l7nDp7g1QrQ54hoh1Q5Ali9fbo1ykHpCKmUhFjMYNMgFLVuK0LFjPZpEnS4FCpVAa1cwmXIIDhdANcIXquG+QEvHujAQQmqG9qTzylLobttWhuvX5bV20i0hRN1zSb9hQ1ZbCZ0QU1iWxfffl2P//gqsWuUNHx9B/Qg+ihRgDhVAsCcPgt9KoOruAeXXzcF2dofiVLR6TgchpF7Qz05TmdRUJe7coXFXhNQFe/dWQCCo+bV79CehA445CZ0CEFLjiotVWLWqBOfPyzBypAvc3OpHpZv5rQTCF/8BFOr1OjTzOgBAUD/eA0LII3wVA1NokUFC6g6FAggIMD7s0lrqzSR0Qky5eVOOZcuKUVbGYt48T3TpUkd7PVgWzF9lYPbkAQBU80PUk8rfaAzVEB8gsI6+bkKI2fgqBoSQ+sMWv//aMgmdVnojNUqpBPz9Bfj4Y++6GXzkKSBY+wBOT1+D0zM3IDhaAHj/9yN3EUA1MZCCD0IIANDiqoTUc7ZIpx0f76pZ+wN4tKhlnZuEToi+khIVfvihHM8954qWLUVYtswLTF1au6JIAeZfKdj2boBMBcHGTLB9vaF8LwRsNw+a10FIPWVsVXNuX00PvSCEODZrDas0da2JjRUjMVE95yM9XYngYCHGjHF1qPkfAAUgdYr2F9LFhUFJCavzZRcK1V9+rltOKFQvflNe/ujfABASov4yA8CGDaXIzlafJCBAgIkT3TRpIfm+/LduKbBsWRHy81X45RcpsrNVvDdiY+c19nr0z2FzMhWYk0UQ7MkD81Mh4OsExclooKEzFOfaAmJq2XR0DvV9InWO/gTz1FT1quaJieoKwYYNpfYuIiGkDuCuNZy7d9XXmrg4uSbVb2ysuNL7m73viRSA1BH6Nz+53HCgof4iVkrlo+BDez/3ZdaXlaXSfMl3764wuNE+/bQMP/0khb+/AFIp8OCByuBGDMDg3Nx5uRs13+vRv5nbVKYMToP/BpOvBNvS5dG8Dm4iOQUfDs+hvk+kzklJkSIpSX1d4xp4uCEQ27apVzvnGlwIIaQ6kpPLeLfv3l2BFi1EZt3THOGeSAGIDdgiyrQ0u0p17NtXofNc3H9//FGKIUMkuHRJZrCfuxGbKp92ijj916N9DlM9MIAV3u97Ugh+yANzoxzKtU2AABFUEwPVCwVGuVjyVhEHUdn3iZCq0m+N1MZlnjFWYSCEEEtlZBjPZmXuPc0R7okUgNQwW0WZtsyuYmxFXqEQeOUVdwwblsObAu7ePaVBL4y2O3eUGDYsBwIB/3NwN3NT7ykAs95v/SDl+WckiH1YCsH3uRD8XgrWTQC2nzcgVQFiAVSvNNQpi727LollaktaQlL7VDa0ysdHgLQ0+p4RQqwjKEiIu3f5rynm3tMc4Z5IAYgVmKqM8kWZgLqS7OlZAomEQX7+o3kS3GMyMpTw9hagsFAFmcwer8pySiUweHCOyf3mnMPUcXL5oyFcfO8ph3+fbiulE8uieYUMf8vFWJZUgp3p91HR1AW72/rjgFwM6Q0BlCPzNMdzc2Tc3BgUFT365XJD1viCnLVrSzTHCoXAsGESzRhNYju1JS0hqX0qG1qVk0NDrwgh1hMf72q019Xce5oj3BMpAKkmY63xnp4lOpVUPkVFrOYY7XkX3LlozHANYFm0rJChT2EpehaVwVWlwnPNg1AsFOK5oEaQyrTmc/DMmQFg9HPduLHUYA6L/uN3764AAApCbIy7YHO/LUdNS0jqHlpMkBBiTbGxYnTtWoFz5wyHiph7T4uJERn0otj6nkizZ6vJWA9HZcGHKbRQVc0QsCzW33mI1amZeKykHIe83fFaREMU/9e1IRVU7+egnWLT1Jjv/fsrqvU8xHLqtIQeCA8XQiQCwsOFSEz0oGFzhBBCbMYaKxKkpEh5g4+RIyVmT0DnGkOr8nhroR6QaqKVbR2Xu1KFJ4pKEVtSjgVB/pALGOz3dsc9sQiXXMVQ1eDaJKYmiclk6guAsR+6LeeXWOO5ast8GO20hFyZk5KKHbrMhBBC6g5r1Bf5kg4xDHDxohzjx1f++I0b+eetnTolM+vx1kI9INUUFCS0SkRLrIRlEVtchrnp2dh2Kx0JmfkAAK//xk/t9fXAn26SGgs+UlKkANTfC1OWLCnWHKv/+CVLipGaqoRc/mhIX0qKFCkpUiQk5GPEiBwkJOTzPt7Sshp7Lluew9ZqY5kJIYQQoPoTyI0tiGrrYf8OF4DcvHkTr7zyCrp27YqwsDAcOHDA3kUySX/Je2IHLIuocqlmcP9zuUUIlCuwyd8bzzcLwpyQAOSIbNPZt3FjKRIS8s3KerNkSbFBIGEsNd7GjaVWrzSbSsNny3PYWm0sMyGEEALwN3xbYwK5rUfzOFwAUlZWhtDQUMybN8/eRTGL9thyYluNZXK8kF2AL/99gI9TMxFVoU4X9lZIABIiGuF7X0/kO9n2c8nKUiE11XS6YW1c8gEukDDWspGVpTJZaa5K74g10vA5Qio/S9XGMhNCCCHAo4ZvbSwLdOggMuvx/v78Vf+AANuGBA43B6R9+/Zo3769vYthMZoHYlvvZuTgieIylAoYnPZwxWpPX9yUOAMAyoX2jaur8l0wNibT1HlZVr12yvjxecjOfhSgcEFNQEApJk50M7pwozXS8Fl6DkeYL+II6QcJIYQQS3BzR2NjxYiLkxtMJDd3JfRJk9x40/hOnOhm1fJWxuF6QGob7fHkpGaIVCy6F5dhXno2/OUKAMA5dwmWNG6AMc2CsLJRA/zlJgFbi8fBZWWpsGRJsdFFHk3hxm3qByjcOTdtKuEdvhUTI9IZPliV1LT6QxBNncNR5l5YUmZCCCHEEWgPE754Uc47DMucocTcyB2ux4NhbN/7AdTyAEQqlaK4uJj3r6zMNuO5+bIREOtoUS7F1Id52HYrA/MychAgV8BHoQ70jnm54xdPt2qnznUkNRE/MQywb18F7/CtP/6QVzs1rSXpbR1l7gWl5CWEEFLbaA8TtsZQYu2h3dnZKps3CDrcECxLrFu3DqtXr7ZrGSgNr3U1lsmR6ySEVCDAkPxitC2T4oC3O457ueGe2LzxjbVVTXyPWBa8vSrchUo7NW1VmXsOR5p7YY3XTRwHy7JYsWIFkpOTUV5ejr59+2Lx4sXw9PS0d9EIIcQqtIcJV3cosakGQVvdG2t1APLaa69h4sSJvPuuXbuGUaNGWfX5zB1HTyzjoVSiZ1EZ+hSWolWFDEmNfHHMyx3rAn1RJmBq9dAqS9RETxrDAE5OgEJhmDPc1nMeaO4FqSmbN2/GF198gY8//hiBgYF444038O6772LNmjX2LhohhFiF9jDh+HhXLFlSrKk3WDqU2BEaBGv1+BWxWAwPDw/eP1dX647nNjZ+nRtHT6rmhewCbPsnA69l5qNYKMCSxg1w0kP92ZUKBfUm+AgIEFT7e6Q/Go27IA0ZInGIOQ8094LUlOTkZLzwwgt46qmn0LZtW7zzzjs4cOAA8vPz7V00QgixCu2eieoOJa6pVL6WcLgeEJlMhn/++Ufz7/T0dFy9ehX+/v4ICAiwW7n4uqsA8C5nT4xgWbQul6JPURl+8nTFFVcJbrqIsSHABz97uqLQxilzHY1QCLPT9/LRD2D8/QWaLFgtWoiwbVsZ0tOVCA4WYswY22efUl8wYZVyOEI2LeIYpFIpbt68iTfeeEOzrWvXrlAqlbh69Sp69OhhcLxMJuM9Fzd38Pbt2zrbvby8EBISAqlUqnN/AoCKigJIJC3+O3cqWLZcZ79I1AhCoRcUinwoFJk6+wQCVzg7h4JllZBKdc8LAGJxMzCME2SydKhUJTr7nJz84eTUAEplEeTy+zr7GEYMsTjiv/LdAKB7cXB2DodAIIFc/gBKZaHOPqHQFyJRAJTKUsjlaXolcoJE0uy/894CoNB7rSEQCt0gl2dBqczTO68XRKJGUKkqIJPd1TsvA4kkCgAgld4By+qOQxeJGkMo9IRCkQuFIltnn0DgDmfnYLCsAlLpLegTi5uDYYSQye5BpdKdb+bkFAgnJx8olYWQyx/olohxgVgc9t9rvW5wXmfnCAgEYshk96FSFemd1w9OTn687yHDOEMsbvLfef8BoHvRd3YOhUDgauQ99IZI1NDIeyiARBIJwNh7GASh0MPIe+gBZ+cgsKwcUqnudx8AxOJIMIzAyHvYEE5O3lAoCqBQPNQ7L/f9VkEqvclz3qZgGBFksgyoVLpZmR59v4shl2fo7NP9ft8EoLuA3qPv90MolQU6+7jvt0pVBpnsnl6JhJBImgMApNJ/wbK61wnu+61Q5EChyNF7rZ5wdm4MlUoKmeyOwWut7jXC35/FlStXdPZ5egIrV0ZBJBIhNTUVxcUZ0D6kYcOG8PPzQ2FhIdLSdL+HPXsK8PXX6jq19jWiWzc3XLmSgWbNmkEikSAjI8OgIcfPzw8NGzZEebnu67CUwwUgmZmZGDhwoObfS5YsAQBMnz4dM2bMsFexaK5HNTSSyfFUYSn6FJWioVyJTCchLrpKAADn3V3sXDr74oZHZWerLP5+CYVAaKgQJSUscnJUBkOb3NwYTaWc+29ysrryn5xcprPdVqwx94LrjeQaBLjeyMRE278eYn8FBQVQqVTw9fXFwoULcf78eezfvx/Ozs7Izc01ON6cuYNvvvmmzr+HDh2KlStX4sGDBxg+fLjB8S1anAUAPHjwPioqdCsJjRq9By+vASguPo7MzOU6+9zcuiIk5COoVBW4e/clg/M2a3YITk4+yMpajZKS0zr7AgKmwtc3HqWlv+H+/Xd19onFkYiI2AwASE2dCJbVnQgWEZEMsbgJcnI2obBwn84+X99xCAh4DRUV15GWNkVnn5OTP5o1Ux+fnj7DoCIbEvIJ3Nw6Ij9/J/LyNuvs8/IagkaN3oVcft/gtTKMCFFRpwAA9++/Z1BZbdx4MTw9+6Co6Aiysj7W2efu3gPBwcuhVBbzvofNmx+HUOiGzMwVKC09p7MvMHAmfHyeQUlJCh48WKCzTyKJRnj4RgDgPW+TJt/B2TkEOTmfo6joiM6+Bg1ehr//JJSXX0Z6+nSdfSJRMJo23QkASEt73aCCHBa2AS4ubZCXl4z8/O06+7y9R6Jhw1mQye4alEkgcEVk5E8AgIyMRINKcFDQh/DweAKFhfuRnf2pzj4Pj94ICloChSKf97VGRp4EwzjjwYOlKC//Q2dfw4bvwNt7GEpKfsHDh0t19rm4dEBY2KdgWQXveZs23QuRKADZ2Z+guPgnnX3+/q+iQYMXUVb2BzIyZuvsc3aOQJMm2wAA9+79zyAoCg//ChJJC+TmbkFBwS6dfT4+zyEwcDqk0ttITZ2ks08o9Ebz5ocBAOnpsyGXp+vsDw5eDXf3x5Cf/z1yc7/Q2efp2Q+NGy+AQpHF+1q5a8TDh++jvNzwGtGgwQDk5xu/RrzwgoD32tO794/IzvbEw4fzkZ19SmffO++8g5dffhm//vorpk6dqrMvLKwlXFy+BKB7jeCW4Dt48CAiIyOxdu1afPfddzqPfeWVVzBr1izcumUY8FuCYdm6Wa2+fPkyBg8ejD179iA6Orra50tIyKe5HhbwVCjBACh0EmJMTiGezSvCSQ9XHPdywxUXcb0ZWmUOS+d+MIy6u3XNGh8AwIgRObwTzUUi4Pvv/QAYVtq5/9bG7E98v0X994RY5sqVKxg+fDj279+PNm3a2Ls4FsnMzESXLl2wc+dOnD9/Hn/99RfWr1+P5s2bY/ny5Rg2bJjO8aZ6QLi5gytWrEDTpk012031gEyfTj0gj14r9YCoz0s9IOrzUg8Ih7tGiET3UFys+x6KRI3g6+uN3Nw8o9eIt992hbf3v5rtly7JsWlT6X+/RyfI5elQKkswYYIb2rZVJ+wx1QOyfLkMubmhYFnda0TjxkLMnu1hVg/Ib7/9hjFjxlT5vuFwPSCOSn/CDzEkUrHoWlKOvkWl6FxSju8aeOIrf2/s8fHALl8PyOpQylxrsvT7pD9vwpzJ3fbKeFETQ6UcYfIccRze3t4QCATIy8vDlCnqFvuSkhLIZDI0aNDA4HixWAyxmP87yM0dbNq0KW/DlVgsNtju4pKj+T5yFVY+Tk4+cHLiD5AZRqipoPBxdg42uk8o9IRQaDzbF1ex5yMSNYJI1MjIed0gFBovExeI8J83ACIR/5BpgUBi8rVyFUs+Tk4N4ORk+JkCAMM4VfIehhrdJxR6QSj0Mrrf9HkbA2hs5LyVvYfNje6zz3soqvJ76OTkDScnbyPnFVRy3iCj+4RCj0rew0ij+0SihhCJGvLuEwhcK3kPmxjdxwWY/OcVmzwvEAqJxHBrWRlr8hrx7bdSrFnz6Nrz2Wf5cHF5dC8UiYLh7AycOSNEfLzuOby8vODlpfv9Lix8dN3SvkYUFwPR0Y9eW1BQEIKC+D8fF5fqjWChGqGZ9Cf8EF29Ckux/VY65t7Pga9Cic8DfPC9jwcA9crkFHzwEwotW//DyUk9tyMpqRgJCflISZGaNbnbHpX2mlp40BEmzxHHIRaLERkZiQsXLmi2nTt3DkKhEK1bt67x59+3z69G1vAhhNQ9QUH89ylXV9MXEf17dXXv6d7ehnUyW99HqVZogdhYMdas8dEMa6nPgmRyjMsuQM+iUgBAmliEvT4emBjRCFPDG2Kvr0e9n1RuLu3goTIKBZCTo9Kp0AOoNBuGPSrtxnpdNm4sRUJCPkaMyNEEUZagbFpEX3x8PLZu3YqjR4/i0qVLWLp0KQYNGgQfH9sMydu3zw/h4XS9I4SYFhPD34JdWGh6KIT+vbo69/SUFCmys1UG2219H6UhWFUUHi7E3bv1a8iHp0KJJ4vV63W0qJChRMBgWwN1t94tiTNuSZztXEL7euwxEc6eNZyMIRAAKsPfOhhGPYl8zBhXncxQHTqIsGdPBe9jAP5hVGvW+Jgc2lTdnOFVYayFRnv11apMILdmNi1HYI1havU9K9i4ceOQlZWF2bNnaxYiXLRokU3LkJFRv+4HhBDLHTtWtREA+vfqmBiRQR3U3Hv6xo2lvNu9vBib3jcoAKkivg+/LhKpWHgolcgTOaFtmRSvZObjN3cXLGrsh7PuLpALaOwBoP7hzpnjhZQUKW/F2NgkcG6/9o8+JUUKPz8ZsrKMRCBa+LpcjVVGbV1pN7VIZ3XnotSVlcytkdGLsoIBDMNg1qxZmDVrlt3KQIvSEkIqU1RUtQuEfh2hOktAGKtbVLVsVUVDsKqguh++o2NYFm3KKjD9QS6+vZWO17LUGRDOubsgvlkQ5gf745SnKwUfWgoLWWzaVKJJcxsUpFvBN3fRoE2bSrBkSbFZwQdHu8vV1LwLbgjhrFkeYFnozCOpCXxDpfjU5wnkppID2PIcpPq47zsfhgE8PRk4aTX5ubqqGy4IIaQymzY9yoLHpdHnU53rvq0bT6gHpApMffi1XctyKd7OyEFDhRIPRELs8fHAcS83AIBcwKBQQOOcjdm9u8JkK3RlrfZVDWy1u1wry3Zly9Zyvl4XY2uW1NcJ5NZIDkBZwRwD933n5mVpY1mgvJzFnj2G8wdTUqTYuLGUt9EhLk5Spxu7CCHm2bu3AhMmuAMwPdzTnOu+v7+Adw6IrRtEKACpgro01tdLocSTRWVgwGKPryfui5zwu7sLjnu64qqL2LIUTUSn4g9YNrSoKoFtQIBAE1gkJ5fxDgvUrozaOh0v3/AyW89FcWTmpFC2xTmIdcTGihEeXmbR58H9RowN32zRQmQ0QCGE1A8KrSV3goKMz0E257o/aZIbb0NJYSGrGS1hCzQEqwqMpVGrLUQqFk8UlWJhWha23crA5Kx8hEvVk6cLnYT4uKEvrrpKKPiwgnv3lEhJkZqV9akqge3EiW46w674aFd+qtNabu7rMMXcoWj1hTUyelFWMMdS1c9DO8uidlKJ2FixyRSdwtp9OyKEWCg+3vi1xFiWLXPZcuguBSBVYOrDd1QMy8JXrg6hg2RyvHs/F55KFT4N9MGYZkFY3Yh/YSJiXGVzG7h95qyFUVllPiBAAKEQcHZWVzgiIh5V3LmMFnzjN/UrP1VN3WfNNT2MVbQqY0kAZI1gyRasEZBRUOdYauLzMNU4ERoqRFwcz8pmhJA6Q3sptdhYMfz9+avvFy8aZuLUZywLFmDbobs0BKsKjh+vPWNyQ6Ry9C0qRa/CUpQLBHgloiHuSpwxrkljZDrTx19VAgHg5ydAfr4KwcHqITB8aXMVClQ65Imr3Bvj4qLu6QCgyW7FnS8lRWpyaEZ4uO5k+Kqm47XXSuocS+au1LasUNbI6FVXsoLVFdb+PEwNuRgzxtXg90kIqVv0Gw4LCvjv+1wAYSo1u6k6Ay1E6ODOnas8wrQ3f7kCa+4+xMY7DzAovxgX3F3wccNHi3JR8FE9KpX6RzxrlgfWrPFBaCj/j5avUqA/5ImrPBhTXq7uReHrgTDVkhERITToYahq66y9JzpbkumJskKRusZYr/vIkRLExop5f5/mCAgQICCAqgGEODr9Ooap0QzVGbHQoUP1hnBZgq48dYSzSoWeRaUYm10AAMh1EiLVWYSFQX4Y0yyY5nXUEK5Sy1UQ9Idl+fsLKh3yZEnlQb9SzZfJgmOsV6MqQ6DssZK6NksCIHsHS4RYG9dwEBGhbjjghmCOH6/OisP3+zTHxIlumt5VQkjNc3Gp2uP0AwNTc824hDZ8SXEA0/PG/vjDdg3sFIBYSDsXs70xLIt2pRV440Eutt/KQOL9XLQvk0LIslAxDJY3boBfPWi9jpp0544SCQnqdVL4ehYmTnSrdEJqVSsPLAudc2vjsmNZQ0qKFKWlrEFWH1tOdLYkALJ3sERITTDVcKBfGeFwaTX1twcECDQ9n3zBzciREot7RkQi9TWQEGJ9+oFBbKwYcXESzdpCTk7qtN2xsWKkpfE3tt27p95uqsGT5oA4qE2bShwiJ7u3QokCJyFcVCzeT89GrpMQu3088JOXG+472677jKjdvcvNMVAPx9JX2Qrk3LwMSzGMuoclK0tlMKfDWq2a2vMptPn7CzBxopvN5h1YMnelqvNcCKmt+Nbc4a4zxtL76j9ef9v48Y/+X/scACDXayTlAnz1OSy/lhFSX5SXV+1xXPDA4dYN4+7NCoV6LbIWLUQQCAAlTxzB9XyYavD08bFdvwQFIBb4/nv7BR/eCiV6FZWiT2EpGssVGNMsCGVCAV6NaIgMkRMNrbKS6kzkNDYhu7IJqdqVh3v3lGAY3Zzf2mUyFmhUVsGoKr7JrQwDuLkxNp30bKqCVZ1jCakrjF1nrJ3koLK1fAQC8CbkIIRUnX4Vz9RcR2O/Py4o4QtO7IECEAvYI8OIE8tiXno2OpVWQAXgvLsLtvl5QfHftzGDejysiuvO1G/hM4exrktT2Sg4fAv26VegAeOV6pqqXDvSfApLKlKUFYqQmlFZgB8aajxjV0CAALm5KgiF6kpQaKgQgYECXLwoh0ymvv66uTEoK2N1zrtpUwn276/gPebhQ2WVW5UJqS20GyUB0/fmkBD+36CxZDnacnNt13pAAYiDYVgWbcuk6FpSjg0B3lAwDDJFTlgX6INfPF1RTKtO1ajgYCFYFkZvoJU9Vp/+sL1Hw7VMBw2mWjNtiVbZJoToMxXgGxtSOnKkRDNp3lITJrhjwgT+x1aWxpwQR+LiUvVhWNpM3ZvHjKn6MGRbVjFpErqZanohszCpDBOyCrDl9n18mJaFbiXlaKBQV4I/aeiL/T4eFHzYwJgxriYXmjQ1MVP/x82N0eRTW1LC0irbhBBLVJaxq6aezxrphBnmUXnj4iQ6i78RYg3WGv5k6t5cWbp9T0/jQ/ZtOTyLekCM0B424+LCoKjI+uOvPJRKdVDBsliQng03JYtfPF1x3MsNf0ucaV5HDXNyerRQoP6k6sRE9Wqh2dkqsKw68ODmWxhr3dNvEeRS4fG5c0eJESNyjA7JchQ0n6J6zBl+R0hdY+shkPpzVLj5dHyVKS8vBn37inHxorzSiflcr0tKihSrVhXTUC9SbTJZ1R6nXx2s7N5s6jcokRiv05ozTMtaKADhod+lK5dbL/gQq1SILS5Hn6JSxJRW4OUmjfDAWYQ5wQF46OykmdtBah7DAPv3+/HuM/XjNbdCnpFhuilBe4EgR12lG6D5FFVV21ZkJ6Qu4AtG+K7V2lm+LDkn4DgZMUn9wTcHuar35vx8y9cPqwkUgPAw1XJdHa9m5uHpwlK4qlhccRFjbaAPCv8bVpUupsnktlSdeQzm/uiDgoxPxuRoZ66gSmndYipLCX3WhNS8mmo84XpG9u6tMJgcrG3kSAlYFhYHKwKB+lqhUtkn+Q2p2/jmjwDWXT/MHDTCkUdlLdfm4uZ1uCnV0WaxQICdvp54sUljvBkWiIM+HigT0kdgK7aex2BqLok2WqW7bnKkDGKEEOuaMMEde/b4aea7cEEDADg7P5p0P2GCu86CcRxuMci4OAmcnXUft3evH374wQ/vvEMLOxLr45s/Alhv/TBzUQ8ID3Naro3x0Vqvo5lUjiKBAGfdXXDNVYyt/t7WLSgxCzfHw82Nsek8Br4xmiUlLHJyVJRVqh6gDGKE1H3m9LKYyuKlPdeEb19cnJyGexF4eVlveL6jzO2kAIRHTIzIogBErFJBzjBQMQzeeJCL9mUVOOfugq1+XvjN3YXmddiR9oJ99hj2wre+B63SXT/QiuyEkOqaMMEdLVqIsG1bGVJTlVZd5JFbj4U4vilTrJtFzhHmdlIAosdU6lRtApZF+7IK9C4sQ4/iMiwK8sMFdxd8GuiDIqEQJTS0qsq4HouSEhXKzJyO4+ysrtwFBwsREyOqNMOJvThKywOpefRZE0KsQbuyqL0oozFeXgymTHHHxo2lyMrSjVi4hpDERPXwLu1GElKzBAJUOYCsi/cNCkD0bNhQWukxQ/OKMTqvCH4KJdJFTtjRwBN3/5tEfp9WJq8W7R6L5OQyoz1R+q3KM2d66PxALclwYmuO0PJAbIM+a0KINWkP5zK2COOUKe5mZwPTbiTx8VE3nObmqqhnpAZUFnwYW6TQtY52mjtcAMKyLFasWIHk5GSUl5ejb9++WLx4MTw9PW3y/NnZht8QX7kCvYvKcM7dBWliERQMkOLugmNebrhB63VUimEADw/z1lIJD390cUxK4l/dVihU56qmVmVCCCH1lbm9rKYaQoztS0mRYu3akhpZA+3/7d17WBT1/gfwNyw3FeSmdlJhxaML3j1cFIQyxawMtag4Cmlm2DEzvCBYmprKo3ZSKXnU7sfUBy+J5pGsAJ/CNDOyMkAFw5+CmJAgGLdVYH5/0M5hgQWWvcyyvF/Pw/OwM7Mzn+/OzuWz38toq08fy2Y1OeZIqeF515qmd3Yml4Ds3r0bH330EbZt24b77rsPS5cuxcqVK5GQkGDUOOzq6xH4ZzWCyysxuqoGdRbAbSsZCmytcdyZI1NoY8AAGRISnFsdO93C4n/LqWjqxOvurr4cERFRV2SoWlbVett6sKOKpSXQq5f+EwXVE7wb1+LU1mpuMrZihUOLtUKdgaYakrq6hoTQ3H5oNbmOComJiXj22Wfx8MMPY+TIkXjttdfw+eef4/bt20bZfp8+DR/J7D/KEft7CWwEAdv+5oIZg/rjhKNxhygzF6pOt3Pn2mPFCgfxM1bR1Dm3paHi2ImXiIjIOMaNs0VCgjOOHm0YcljTaExPPmmHjz92EYcltm5na3QLi4b7Lg8PGWSyhv6cMhng4SETk4/GcRw50gtyuaxZwxMLi4b3GPsmvb3lBNBsKGZt7NtnmOfTScmkakCUSiVyc3OxdOlScdrYsWNRV1eH7OxsBAUFGTyGoCAbHD5cgyMuDjjq7IAiG5P6iExSz56am1c99ZSd2gmh6a8qbVUbsxMvEbVm7dq1+P7775GTk4Px48fjP//5j9QhEZkl1fW7cUd4Gxtg6tSGZ540XgYAQkJutbnOjoxS2dYIg63dk+jb1Kl27R4mefp0OyQlaV7Wxga4d6/l2p38fPPrlGNSd9dlZWWor6+Hi4sL1q1bhx9++AHJycmwsbFBSUlJs+WVSiXuahgKoqq9wyc18dNP9wAAf1ib1EdjsqytgcREVwCtd3Rrqr3VxuzES0Stqa2tRXh4OFJTU6UOhahLaO25JtpQjdal7TW+rR8nFy60N0ozLEdHC/FzaJyQeXtb4+LFWpSXN2QSVlYNycfzz9vjyJEajU2tXF0t8fvvLc+UmeHjo0z2LtvV1RV9+/ZtdZkdO3bg7bff1ut29fUUdFPm4fG/oWrbatfZmqYPVWOyQETGtn79egDAL7/8gtLSUomjISKV0NCWawcsLRuabKlqTTT57jslEhOrUFhYh379ZAgP767WJKu1HziN8QBH1bM5vLwa7qcKC+vQt68MEyfa4fXXW46ttZGwNCUfgHk+r8WkEhAnJydYWlqitLQUL7/8MgCgoqICd+/ehaura7PlFyxYgMjIyBbXdeHCBYSFhWkdQ0sdnzujpuN6Nx77W3XQqoaqba1zuJVVw/tcXRs6l/GhakRERNSWlmoHGjfXak3Th/Zeu1aHDRv+xIoV7XsmRuMHOKpqSby9rTU2gVJtx8qqIc7q6obXffpYIjKyof9vSzUumuIMDb0nJiVNk6eOcHc3vyoQk0pAbG1toVAo8OOPP+KRRx4BAJw9exYymQzDhg1rcXlb25Z3aPcODpzctG1hZ6IanrbxgdGeJlGqA1X10CLVgwCbtsvUpokVEZEpMkTTXSJqWUebayUmVqndh6l++Ny3r6rd9x0t1ZJ89llNi7UJVlbAkSO92lxfe+IEgMOHa1pMnnr3tmzxcQ9t0fbH3tZqj0yFSSUgABAeHo5NmzZhzJgxuO+++7Bx40Y8/vjjcHY2zrCrjdsW6tI8yRAa1160hzZNotqzLJtYEZEx7d27FytXrmxxnq+vL5KSkrRepyGa7hKRfhUWNm+JIgjA9eu63ZS5ubU8vH/j5uTaaClOlZaSp3nzenSof4o291661h4Zi8klILNnz0ZxcTFiY2PFBxHGxcUZNYaWniBaUFAHNzcZxoyxwbhxtkhMrMTZs/cMsn0rK8DX1xpFRfWsbSCiLmvq1Knw9/dvcV63bt06tE5DNN0lIv3S9BywjiYKKm2NoKWPOFuiSp4a7uO0S0D8/bUY6xf6qT0yBpNLQCwsLBATE4OYmBipQwEA+PnZIDPzHtzcZIiJcYDFX4NPr1rlKHFkRETmzdHREY6O+j3XGqLpLhHpl74TBRV9D++vKc6mGidPmoYJdnS0gJeXFX744Z64rrFjrfH669qdAw1Ve6RvJpeAmJKbN+vw5pt/4v/+rxYvvMCHEBIRmZqrV6+isrISZWVlqKioQHZ2NqytraFQKKQOjYg6yJDPAdNnc/KW4lR1dteUPGkaJlg1qlZRUb3Yd2PiRDutYzJU7ZG+MQHR4OxZJbZurYC9vQXeessRgwdrVwVGRESGt3z5cnz//ffi6ylTpqB///44ffq0hFERka46S7/TluL09LTWmDxpSq4A6KXvhqFqj/SNCYgGOTm1GDnSGosW2cPe3lLqcIiIqAUHDhyQOgQiIjVtJU8tzV+48LZe+m4YsvZIn5iAaBAR0R2WlhD7fBARERERGYI++250htoj/rSvgUxmweSDiIiIiAyuXz8Zmt52mmLfDX1hAkJEREREJKHw8O5isyvAdPtu6AsTECIiIiIiCTX03XDAgAEyWFsDAwbItH4AdWfCPiBERERERBLrDH039IU1IEREREREZDRMQIiIiIiIyGiYgBARERERkdEwASEiIiIiIqNhAkJEREREREZjtqNg1dTUAADy8vIkjoSIyLSpzpOq82ZXxesGEVH76HrdMNsE5Pr16wCA6OhoiSMhIuocrl+/Dj8/P6nDkAyvG0RE2unodcNCEATBAPFIrrS0FOnp6XBzc4OtrWHHVK6qqkJYWBgOHjyI7t077xMrzaUcgPmUxVzKAZhPWcyxHDKZDAUFBRg/fjxcXFykDk0yhrpumMt3pjVdoYxA1ygny2g+DFlOpVKp03XDbGtAXFxc8OSTTxplW3/++ScAYOjQoXBwcDDKNg3BXMoBmE9ZzKUcgPmUxVzL4evrK3FE0jPUdcNcvjOt6QplBLpGOVlG82Hocupy3WAndCIiIiIiMhomIEREREREZDRMQIiIiIiIyGiYgBARERERkdEwASEiIiIiIqNhAqIHNjY2WLx4MWxsbKQORSfmUg7AfMpiLuUAzKcsLAdpqyt81l2hjEDXKCfLaD5MuZxm+xwQIiIiIiIyPawBISIiIiIio2ECQkRERERERsMEhIiIiIiIjIYJiI4EQcDmzZvh7e2NIUOG4JVXXsGdO3ekDktrubm5+Ne//oWxY8dCLpfj888/lzqkDklISMDkyZPh5eUFPz8/xMbGorS0VOqwOiQ+Ph4TJ06Ep6cnfHx8sGjRIhQVFUkdlk7eeOONTv39io6OhlwuV/uLj4+XOqwOSUtLw5QpU6BQKODj44PNmzdLHZLJ0/V8X15ejoULF2LIkCHw9vbGli1bmi2za9cu+Pv7Q6FQYPbs2fj999/1WYQ26VLG8vJyrFixAoGBgVAoFHjggQeQkJCA+vp6cZn4+Phmx1B0dLShiqORrvsyMDCwWTnOnDmjtkxn3pdnzpxpVj7V361btwCYxr7U9d6lMxyTgG7lNNnjUiCd7Nq1S/Dy8hJSUlKE8+fPC8HBwcLChQulDktrP//8sxAXFyckJycL7u7uQnJystQhdcicOXOEpKQk4fLly8K5c+eERx99VJgxY4bUYXXIoUOHhFOnTgnXrl0TMjMzhbCwMCE0NFTqsDrs5MmTQlhYWKf+fi1dulQIDw8XioqKxL+Kigqpw9Lat99+KwwaNEjYtm2bcPnyZeHSpUtCenq61GGZPF3P9/PnzxeCg4OF8+fPC1999ZXg5eUl7N27V5yflpYmeHh4CPv37xeys7OFsLAw4YknnjBEUTTSpYyXL18W5s+fL5w4cUK4du2a8NVXXwnDhw8X3n77bXGZrVu3ChMmTFA7hsrLyw1VHI103Zfjxo0TtmzZolYOpVIpzu/s+1KpVKqVraioSIiOjhaefvppcRlT2Je63rt0hmNSEHQrp6kel0xAdDR58mQhLi5OfK36spaWlkoYlW468w1iU1988YXg7u4uyQVO31JTUwW5XC5UV1dLHYrWbt++LTz44IPClStXOvX3a+nSpcKcOXOkDkNnYWFhwvLly6UOo9PR5XxfUlIiDBgwQEhLSxOnxcXFCY8++qj4eu7cucL8+fPF1zk5OYK7u7uQlZWlpxK0Td/XtDVr1qiVcevWrcKkSZN0jlNXupZz3Lhxwrvvvqtxvrnty+rqamHEiBHCwYMHxWmmsi9VtL22dJZjsil9XENN4bhkEywdKJVK5ObmwtfXV5w2duxY1NXVITs7W8LISOXOnTuws7MzyTGwtVFWVoakpCR4enrCzs5O6nC0tmLFCoSHh8PDw0PqUHT2448/wtvbGxMnTsSbb76JmpoaqUPSyr1793Du3DkMGDAAzzzzDHx8fBAeHo6LFy9KHZpJ0/V8n52djfr6+mbvv3TpEpRKJQAgMzNTbb5CoYCTkxN+/fVXPZZEM0Nc0+7cuQNHR0e1afn5+fDz88MDDzyAlStXory8XKe4taWvcn7wwQcYPXo0QkJC8Omnn6rNM7d9+cUXX6Curg6PP/642nSp96UuOsMxaSimcFwyAdFBWVkZ6uvr4eLignXr1iEkJAT29vawsbFBSUmJ1OF1eZWVldixYwdmz57dKW/aAeDEiRMYMmQIRo0ahd9//x179uyROiStHT58GIWFhYiMjJQ6FJ1NmDABCQkJSExMxIIFC3DgwAGsWrVK6rC0Ulpainv37uG9995DaGgodu3aBVdXV8yaNQuVlZVSh2eydD3fl5SUwMrKCo6OjpgyZQrWr18PZ2dn1NfXo6ysDEDDvnF2dsZHH32EwMBAVFdXw8XFxWj92PR9Tbt06RKOHTuGefPmidP+8Y9/YNu2bdizZw9ee+01nDx5Ei+99JI+i9EmfZQzMjISO3fuxN69e/Hwww8jNjYWhw8fFueb277cv38/QkJC0L17d3GaKexLXXSGY9IQTOW4tDLo2rsQV1dX9O3bV+ow6C+1tbWIiorCfffdh5iYGKnD6bCAgAAcP34chYWF2Lp1K9auXYvt27dLHVa73bhxA3Fxcdi/fz9kMpnU4egsJCRE/N/LywsymQxLlizB2rVr1S7Mpkz469mzkyZNwsyZMwEAGzduxKhRo3Dq1Ck88sgjUobXKeh6vu/bty969eqlcb6TkxP69u0LS0vpfiPUtYzFxcWYN28e5s2bh+DgYHH6Qw89JP7v5eWF3r174+mnn0Zubi4UCoUuIXdIR8v5/PPPi/8PHz4cN27cwK5duxAaGqq2nDnsyytXruD7779HbGys2nRT25e66AzHpD6Y0nHJBEQHTk5OsLS0RGlpKV5++WUAQEVFBe7evQtXV1eJo+u66uvrsWTJEhQXFyMxMbFTN7/q3r07PDw84OHhgYEDByIgIAAvvvgiRo0aJXVo7ZKZmYnS0lK1G3cAWLRoEb788kskJCRIFJl+DBs2DIIgoLCwEIMHD5Y6nHZxcnKChYUFBg4cKE6zt7eHs7Mzbt68KWFkpk3X872rqytqa2tRXl6ODz/8EEDDSGSWlpZwcnICALi4uOD27dt44YUX8NRTTwFo+AXWxcXFMIVqQl/XtNLSUkRERCAoKKjZTWtTw4cPBwAUFhYa7abVENfuYcOGIS0tTXxtLvsSaKj9GDRoEHx8fFpdTop9qYvOcEzqk6kdl507lZOYra0tFAoFfvzxR3Ha2bNnIZPJMGzYMAkj67oEQUBsbCx+++037NmzBw4ODlKHpDeqGoSqqiqJI2m/oKAgpKWl4fjx4+IfAKxcuRKvv/66xNHpLi8vDxYWFujXr5/UobSbnZ0dBg4ciPz8fHFadXU1ysrKcP/990sYmWlr7/m+srISBQUFzZqzDR06FJaWls3e7+XlBVtbWwDAiBEj1Obn5uairKwMI0eONFSx1OhaRqBhyM+IiAiMGDECGzZsaHObv/32GwCgf//+eihB++ijnE3l5eWplcEc9iXQ0GcsKSkJzzzzTJvblGJftkdnPia10emOS6N2eTdD5jIMr1KpFLKysoSsrCzB3d1dePfdd4WsrCyhqKhI6tC08uqrrwoBAQHCpUuX1IaTq62tlTo0rVRUVAirV68WvvvuOyE/P1/46aefhIiICMHf379TDvvaWGcdBauiokJYu3atkJGRIeTn5wtpaWlCQECAEBMTI3VoWtu5c6egUCiEY8eOCVeuXBGWL18u+Pr6dvrvlqG153x/8OBBwd3dXW20IJXGQ36mpKRoHPLzwIEDwoULF4SwsDBh+vTphi6WGl3KeOfOHSEkJER49tlnhZs3b4rn31u3bonLrF27Vhxe/PTp08IjjzwihIeHG6VsjelSzoyMDOHdd98VMjMzhatXrwq7d+8WBg0aJCQlJYnLdPZ9qZKcnCwMHDhQKC4ubjbPFPZle+5dOvsxKQi6ldNUj0s2wdLR7NmzUVxcjNjYWFRXV2PSpEmIi4uTOiytFRUVYcqUKeJrVYa8ePFiLFmyRKqwtJaYmAgAmDx5str0U6dOwc3NTYqQOkQmk+HmzZtYvHgxSktL0bNnT/j6+mLv3r3o0aOH1OF1STKZDBcuXMChQ4dQVVWF+++/H0888QSioqKkDk1rL774Iu7cuYM33ngDlZWVGDFiBD755BN+t9qg6/l+06ZNWLFiBcLCwtCtWzdERkYiIiJCnB8cHIxVq1Zhy5YtuH37Nvz9/fH2228boCSa6VLGrKwscXSgMWPGiNP79++P06dPA2joF6Z6IF7v3r0xceLENpuDGIIu5bS1tcXRo0fxzjvvoLa2FgMHDsTGjRvV+n909n2psn//fkyYMAG9e/duNs8U9qWu9y6d4ZgEdCunqR6XFoLwV49EIiIiIiIiA2MfECIiIiIiMhomIEREREREZDRMQIiIiIiIyGiYgBARERERkdEwASEiIiIiIqNhAkJEREREREbDBISIiIiIiIyGCQgRERERERkNExCiTkAul4t/n3/+udThEBFRO5WXl0Mul+PMmTPN5j322GOIj4836PbnzZuH6Ohog26DSFtMQIj+8thjj2Hw4MHIy8vT+r2ffvophgwZYoCoGmRkZCAjI8Ng6yci6iqio6PFH3QUCgWCg4Oxe/duSWJJTEzEiy++2OH3BwYG4r333mt1mc2bN2PNmjUd3gaRITABIQJw/fp1XL9+HdOmTUNKSorU4TTTp08f9OnTR+owiIjMQlBQEDIyMpCWloaIiAisXr0aR48eNXoczs7O6NGjh0G34ejoiJ49exp0G0TaYgJCBCA1NRUBAQF46KGHmiUgtbW1iI+PR2BgIBQKBSZPnozjx48DaKj5kMvlWLZsGaqqqsRf1f75z3+K74+Pj8fDDz+sts7GTanq6uoQExODwMBADB48GIGBgdi+fbvWZUhOTsakSZOgUCjg5+eHZcuWab0OIqKuwMbGBn369IG7uzvmzp2LwMBApKWlAQAKCgogl8uRmpqKWbNmwdPTE35+fjh37hwAoKamBmvWrIGPjw+GDx+OOXPmoKCgQFx3XV0d1qxZg2HDhsHPzw+fffZZs+2Hh4eL1wtNTbAyMzMREREBLy8vjBo1Cq+88goqKioANNR8yOVyXL9+HRs2bBDX1biZV2xsrDi9pSZYNTU1WLlyJUaNGgVPT08899xzKCwsFOefOXMGcrkcR48exfjx4zFs2DC89tprqK+vF5cpKyvDK6+8gtGjR8PLywuPP/54i03NiJqykjoAIlOQkpKCxx57DEFBQVi8eDH++OMP9O7dGwCwdetW7Nu3D+vWrcOIESOQl5eH/Px8AMDUqVMxfvx4JCcn49///jdOnjwJoOHi1l51dXWwsrLCli1b0K9fP1y8eBFRUVG4//77ERoa2q51FBcXY9GiRViyZAmmT5+O27dv49SpU1p+CkREXZOdnR3u3r2rNm3jxo2YN28e1q9fj99++008r69cuRJ5eXl4//334ezsjB07diAyMhLHjx+HTCbDnj17cOTIEWzfvh29evXC8uXLm21v586dUCqViIiIaDGekpIShIeHY+LEiUhKSoKFhQW+/PJL/Pnnn7C3t8d///tf1NXVYdq0aQgLC8Ozzz4LAHBychLXsWrVKixbtkzjj1HvvPMOUlNTsWPHDri4uOCNN97AokWLcOjQIbXlDh06hA8++ACXL1/Gyy+/jEmTJiE4OBhAw/UxOzsbu3fvhqOjI7KystQSFCJNmIBQl1deXo4ffvgBGzZsgLOzM4YOHYrU1FSEh4ejpqYGH374IeLi4jB16lQAwIABA8T32tnZwc7ODg4ODrCwsOhQMykbGxts3LhRfO3m5obx48fj66+/bncCUlRUhNraWkyePBlubm5wc3PDyJEjtY6FiKgrqa+vx9dff4309HSsWrVKbV5ISAhmzpwJ4H/n/YKCAiQlJeHEiRP4+9//DgBYv349hg4divPnz8Pb2xsHDx7EzJkz8dBDDwEAli1bhjlz5qit29HREQBgZdXybdgnn3wCJycnbNmyRVxm6NCh4nxXV1cAgEwmQ48ePVq89jg4OMDBwQG2trYtbiMxMRGLFy9GYGAgAGDdunWYPHkycnJy4OnpKS4XFRUFhUIBhUKBhIQEnD9/XkxArl+/Di8vL/F6I5fLW9wWUVNMQKjLO3HiBP72t7/Bw8MDAPDAAw8gJSUF4eHhuHr1KpRKJcaMGWPQGPbs2YP9+/ejsLAQSqUSd+/eFS9e7eHl5QUfHx88/fTTePDBB+Hj44Np06aJFykiIvqf9PR0DBkyBPfu3YOlpSVmz56NWbNmqS3T0nk/JycHgiAgJCREbXp9fT3y8/Ph7e2N/Px8DB48WJzn5eWldXw5OTnw9vbWmKDoqry8HGVlZWqxKRQKWFlZ4erVq2oJSOOkwtHREWVlZeLrsLAwREVFYdq0afDz88OECRMQFBRkkJjJvDABoS4vNTUVN27cgEKhANDQJEomk6GyslIv67ewsFB73bR6+tixY1i3bh1Wr16NMWPGwNbWFmvXrtWqGtva2hqHDh3CuXPncObMGezevRs7duxAWlqa+EsbERE1GDNmDDZt2gQ7Ozv06dMHlpbNu8Rq6rhtaWmJY8eONUsOevXqZZBYpda0nIIgiP8/+uijOH36NL799lukp6dj9uzZiImJwUsvvWTsMKmTYQJCXZpSqUR6ejrWr18Pf39/AA0n1+nTp+Obb75BcHAwbG1tkZGRodb0qilra2vU1dW1OK9nz56oqqoSX9+4cUNtfkZGBry9vcVf3wRBQEFBAdzc3Jqtq3v37lAqlS1ux9LSEn5+fvDz80N4eDh8fHzwyy+/YPz48a1+BkREXU23bt1aPadrolAoIAgCysrK4Ovr2+Iycrkcly9fFl/n5ORovR1PT08cOXJE/EFMk9auPa1xdHSEo6MjLl26hICAAABAbm4uamtrtf5cevfujdDQUISGhsLe3h5fffUVExBqE0fBoi7tu+++Q3V1NaZOnYpBgwZh0KBBGDx4MPz8/JCSkgI7OztERkZi48aNSE5ORn5+PtLT0/HRRx+prWfAgAFQKpVISUlBTU2NWmfGESNGoLCwEL/88gvq6+vx/vvvq73Xw8MD2dnZOH36NK5cuYL169c3S1Iar+uzzz5DYWEhbt26JU4/f/48EhISkJmZiYKCAiQmJsLa2lpso0xERLpzd3fHk08+iZiYGHzzzTfIz8/HN998g6ioKJSXlwMAZsyYgX379iE9PR1ZWVnYsmWL2jru3r2L4uJiFBcXo7a2FpWVleJrleeeew5lZWWIjo7GhQsXkJOTg/j4eNy8eVNtXXK5HCdPnsStW7dQU1Mj1pzX1dWJ61QqlaipqRFfqxKWmTNnYufOnTh9+jQuXryI1atXw8fHR635VVvi4+ORkpKCa9eu4eeff8aZM2c61OSMuh7WgFCXlpqaiqFDhzZrphQUFIRt27ahtrYWS5cuhbW1NTZs2IA//vgDcrkcS5YsUVt+9OjReOGFF/Dqq6+ipKQE/v7+OHDgAADAz88Pc+fOxaxZs+Di4oIFCxaovTciIgIXLlzA/PnzYWlpiWeeeQZTpkxBSUlJs3jXrVuHpUuXIigoCPb29sjMzATQ0NkwIyMDH3/8MaqqqjBw4EBs374d/fv31+fHRUTU5W3YsAFvvfUWYmJiUFZWhr59++LBBx8UO3uHh4cjLy8PCxYsQLdu3RAVFYVff/1VfP+5c+cwY8YM8XVubi4++OADAMC1a9cANHQyT0xMxKZNmxAaGgobGxvxvN/YsmXL8Oqrr2LcuHFQKpXYv38/AgICcOPGjWZ9MZKTkwEAp06dgpubG5YsWYLy8nLMnz8fSqUS/v7+2Lx5s1afhY2NDd58800UFBTAwcEBEyZMwIoVK7RaB3VNFkLjxnxEREREREQGxCZYRERERERkNExAiIiIiIjIaJiAEBERERGR0TABISIiIiIio2ECQkRERERERsMEhIiIiIiIjIYJCBERERERGQ0TECIiIiIiMhomIEREREREZDRMQIiIiIiIyGiYgBARERERkdEwASEiIiIiIqNhAkJEREREREbDBISIiIiIiIyGCQgRERERERkNExAiIiIiIjIaJiBERERERGQ0/w/T1UpHSSypjAAAAABJRU5ErkJggg=='/>
__deets__
User
Beiträge: 14545
Registriert: Mittwoch 14. Oktober 2015, 14:29

Das ist SVG, und für das weh gemacht. Das ganze Ding soll in einem Jupyter notebook laufen. Was du dir überlegen solltest auch zu nutzen. Denn dann gehen alle diese Dinge.
Hamster1988
User
Beiträge: 5
Registriert: Mittwoch 29. März 2023, 13:13

Ok, verstehe. Da ich all mein - wenn auch bescheidenes - Grundlagenwissen in PyCharm habe, würde ich mich natürlich ungern wieder in eine neues Python-UI einarbeiten wollen. Gibt es keine Möglichkeit, den Code für PyCharm anzupassen? Beim Googlen habe ich diesen Faden hier gefunden https://stackoverflow.com/questions/248 ... -show-plot
Aber so einfach, lediglich plt.show() einzufügen, ist es anscheinend nicht.

Aber sehe ich das richtig: Wenn ich den Tutorial-Code bei Jupyter Notebook eingebe, dann wird alles reibungslos laufen?
__deets__
User
Beiträge: 14545
Registriert: Mittwoch 14. Oktober 2015, 14:29

Dafür ist es erstmal gemacht. An sich geht matplotlib auch anders, also mit eigenem Fenster für die Darstellung, aber auf den ersten Blick habe ich nicht gesehen, wie das Backend da ausgewählt wird.
Hamster1988
User
Beiträge: 5
Registriert: Mittwoch 29. März 2023, 13:13

Danke für das Feedback! Ich habe es jetzt auf Jupyter Lab zum Laufen gebracht. GANZ vielen herzlichen Dank dafür, dass Du mir gesagt hast, dass es für Notebook gedacht ist. Jupyter Lab ist allem Anschein auch nicht so "schlimm", wie ich das befürchtet habe. Eigentlich sogar intuitiver als PyCharm. Merci!
Antworten