die zum Speichern von tabellarischen Daten verwendet wird.
(meist ein Komma, aber auch Semikolon) voneinander getrennt sind.
dafür sorgt, dass diese in den gewonnenen Matrizen mit Kommata versehen werden.
Ein solches Programm incl. Anwendung stelle ich hier vor.
Code: Alles auswählen
import torch
max = +100 # Stellen vor dem Komma
min = - 100
#create tensor with random values in range (min, max)
rand_tensor = (max-min)*torch.rand((200, 5)) + min #Zeilen , Breite der Matrix
#print tensor
print(rand_tensor)
###########################
#DATENALSLISTEvonSTRINGS erstellen
import csv
# Daten als Liste von Strings definieren
daten = [[ 1.9076, 4.9431, 4.2682, -1.7551, -2.9451],
[ 3.8058, 1.1403, 1.3145, -0.1483, 1.1046],
[ 2.7989, -3.6833, 3.0629, 4.6992, -3.6592],
[ 4.0691, 2.7379, -2.5465, 4.3426, -2.8635],
[-1.8825, -2.7705, 4.7366, -2.1835, 0.9186],
[-0.9469, -1.9575, -0.8097, 4.6014, -1.7091],
[ 3.7309, 4.5392, -1.9148, -1.0549, -2.8322],
[ 3.9206, -2.8172, 1.8098, 1.9092, -0.7633],
[-0.9648, -2.1586, 2.4470, -0.6911, 2.1273],
[-0.0288, -1.3734, -2.0719, -1.9520, 4.8763],
[ 2.4965, -0.2492, -0.4142, -3.2465, 3.3432],
[-0.3810, -3.3033, -0.6500, 4.1360, -1.5581],
[ 1.7897, -2.2144, -4.8531, 4.7325, -0.3983],
[ 1.7542, -0.6745, -4.2525, 3.8019, 3.4376],
[ 1.1966, 1.3787, -1.0994, -0.4073, -1.9930],
[ 1.3996, -4.8279, 1.0473, 0.4376, 3.3436],
[ 1.0871, -0.5549, 4.6822, 4.3765, -2.4046],
[ 3.1256, -0.6247, -0.6332, 3.8774, 4.9433],
[-1.5155, 1.7281, -4.4274, -3.7279, 4.1838],
[-3.1593, 0.6062, -3.4319, 1.4951, 4.4496],
[ 3.1291, -1.9154, 3.6415, -0.3911, -1.6326],
[ 0.8623, -1.6268, -4.1607, -4.1304, 4.3819],
[ 0.9468, 0.4063, 2.0143, -3.6136, -2.8232],
[-4.0084, 2.1569, -0.8127, 4.8968, -2.9535],
[ 3.8349, 3.1999, -3.2419, 4.3238, -0.4032],
[ 4.0379, -3.4441, 4.5083, -3.4165, -1.4714],
[ 4.6868, 4.6850, -4.5079, 1.0252, -3.9373],
[-0.5215, -2.3950, 0.0919, -0.5404, 0.9853],
[-2.7502, -2.7017, -3.3594, 1.7156, -4.8136],
[-3.7389, -4.7867, -0.1428, -0.5798, -4.9514],
[ 2.5577, -3.8280, 3.3106, 0.8603, -0.9775],
[ 2.9082, 1.1254, -0.2458, -0.7285, 3.7978],
[ 3.0636, 2.5098, -1.4736, -0.8586, -1.1885],
[-4.2493, 4.5712, -3.1356, 2.4622, -4.0948],
[ 4.1751, -1.5244, -3.8694, 1.9995, 4.7696],
[-3.0679, -4.8282, -2.9636, -0.3906, 1.5927],
[-1.1056, -1.7865, -3.1011, -2.5604, 3.1757],
[ 0.6927, -2.8588, 2.2166, 2.2360, -4.3600],
[ 1.2726, 1.4435, 3.1200, 1.3777, -2.3294],
[ 4.7054, -2.7829, 4.6220, -4.9052, 4.4808],
[ 0.4313, -1.3892, -2.7961, -4.4850, -4.2729],
[ 3.9425, -1.3018, 3.9461, 4.2486, -1.9396],
[ 4.6472, -2.1213, 0.0408, 0.8125, 1.3394],
[-3.8060, 4.8333, -1.4873, 1.0969, -4.5335],
[-0.2428, 2.2917, 1.0870, -2.3390, -4.5577],
[ 4.9733, -2.1065, 2.2772, -0.5950, 0.4286],
[-2.9394, -2.8171, -4.4938, -1.7466, 0.5963],
[ 3.7271, 3.6498, -1.9518, -3.2158, 1.9463],
[ 1.3799, -2.4646, 0.7341, 1.9124, -2.9107],
[-1.5172, 1.3287, -1.3717, -0.9242, -0.7148],
[ 2.3746, 1.6479, 3.9609, 4.4555, -0.3388],
[-1.4230, 2.9968, 3.4523, -2.7762, 4.0290],
[-1.1558, -0.0235, 0.4109, -0.1331, -3.2846],
[ 1.1834, -0.7361, 1.9534, 2.9243, -3.3741],
[-1.2181, 2.4678, 4.4405, -2.3413, -1.0612],
[ 1.7496, -2.2606, 1.4426, 4.0689, -1.4501],
[ 1.0921, -2.3077, 1.9746, 4.3174, 3.5768],
[-1.4163, 0.4856, 0.9875, 1.1750, 1.3852],
[-0.4130, 2.4934, 4.8209, 1.9916, 0.7941],
[ 4.8287, -2.1593, 3.4179, 2.1469, -1.4684],
[ 1.0499, -2.9726, -3.7596, 1.6357, -0.5629],
[-2.1888, 3.0691, -3.4527, -2.8533, -3.6672],
[ 0.6737, -1.5280, -1.6498, -3.4263, -2.7711],
[ 2.4243, -2.5216, 1.0485, 4.1053, 4.3640],
[ 2.9082, 4.7195, 4.1724, -2.2944, -4.2193],
[-1.9808, 2.5594, 2.6069, 3.9265, 4.6056],
[-1.7884, 1.8791, -1.1191, 3.1882, -0.3437],
[-2.5979, -3.4906, -0.9270, -3.8194, 1.5982],
[ 3.4918, -4.9520, 2.1543, -3.6970, -2.8558],
[-1.0400, 1.5554, 3.5546, 2.5877, 1.9286],
[-1.0218, 4.2523, 2.3935, 3.2247, -1.3222],
[ 4.4449, 0.4607, -4.8254, 1.4724, -4.5032],
[-2.2471, 2.1446, -0.8604, -1.2113, -0.4716],
[ 2.1463, -4.3196, 1.4557, -3.7682, 0.6553],
[-4.4545, -1.9244, -1.6983, 2.9376, -4.1654],
[-2.2407, 1.5929, 4.3512, -3.4935, -3.0441],
[ 0.7016, -4.9246, -1.9592, 2.8993, -4.9410],
[ 4.5409, -3.8234, 1.0659, 0.2874, 2.1887],
[ 0.8849, -2.1333, -4.1521, -0.2488, 2.3416],
[ 3.1698, -3.6520, -4.4438, -1.3804, 1.8228],
[ 0.2969, 3.1843, -2.9640, 3.4385, 1.9312],
[ 2.2923, 4.7678, -1.2125, -1.2636, -2.8500],
[ 3.4728, -4.0826, 4.1418, 3.0057, -3.2169],
[-1.9800, 3.7696, 3.5986, -4.4288, -0.4752],
[-3.2370, -3.2649, 4.3037, -3.8269, -3.7075],
[ 1.1110, 0.4607, -1.1170, 4.2436, -3.9716],
[-1.6618, 3.2097, -4.9092, -1.1897, -0.8680],
[ 1.8439, 1.8184, 4.4980, 1.7837, -2.4148],
[ 2.8915, 4.9289, 1.7337, 4.4813, -3.0453],
[ 3.4136, -4.0586, -1.8142, 2.5389, 4.8770],
[ 2.7349, 1.5952, -4.4736, -0.2490, 1.4570],
[-1.1699, 2.8397, 0.4805, -1.4023, 4.7696],
[ 1.7122, 4.1569, -3.9817, -4.5565, -4.2358],
[ 1.4338, 4.4338, 3.0971, -2.1806, -0.0498],
[ 2.9088, 4.8965, 3.6554, -2.8076, 0.6801],
[ 0.0454, -4.4391, 4.9458, 0.5392, -1.5189],
[-1.7972, -1.6587, -0.0922, 0.6490, -1.0083],
[ 0.9491, -3.7044, -0.1621, -4.5325, 2.4892],
[ 0.6696, -1.2423, 0.9579, -4.3994, 4.1213],
[ 0.2087, 2.3707, 1.7553, 4.3475, 4.0107],
[-1.4965, -0.7922, 2.1086, 3.5867, 2.2290],
[-2.7068, -3.7498, 0.9527, -0.0279, -2.1550],
[-2.1144, 3.1540, 0.8537, 1.6124, 0.5738],
[-2.7681, 2.1194, -1.8956, -0.8899, 3.1698],
[ 4.6950, -0.0142, 3.4894, 4.8953, -1.3099],
[-3.3194, -1.3640, -3.8729, -1.5419, -1.0908],
[ 0.2460, 1.7425, 3.1840, -1.1959, 4.0755],
[-4.2937, -1.9132, -0.1511, 4.0852, 0.5882],
[ 2.8764, -0.8185, -0.0832, -3.7002, -1.7529],
[ 0.1980, 1.6936, -3.4732, -1.5984, -2.7399],
[ 2.2820, -0.1788, -0.4257, 1.0211, -1.2715],
[-2.7255, -0.6129, 2.4154, -2.2370, 1.8232],
[ 1.5697, -4.5474, 0.9771, -0.2651, -2.8830],
[-1.9378, -4.5873, -2.2087, -0.7764, -4.8894],
[-0.1082, -0.4204, -2.8584, -3.9813, -1.6088],
[-3.1931, 2.7368, 2.7145, -3.9586, -4.5067],
[-2.5430, 3.1436, 0.4276, 4.9429, -3.9803],
[-4.8381, 2.2152, -0.0488, -3.1134, -0.8363],
[ 2.0201, 2.0585, -1.9196, 4.1373, -1.7316],
[ 0.7848, -0.2009, 1.5195, 1.1654, 3.1917],
[-3.4963, -1.4593, -3.4158, -0.2359, 2.7753],
[-3.1051, 4.1146, 3.7063, 2.0273, 2.2155],
[ 3.1474, -2.0087, -4.5295, -4.2529, 1.4613],
[-2.1027, -1.5898, -2.2465, -0.0616, -0.3081],
[ 2.5109, -0.4860, 4.5533, -3.9871, 4.4014],
[ 2.5762, 3.6150, 3.6697, 2.6727, 1.1452],
[ 3.2965, 4.6623, -3.5024, -2.9590, -2.6721],
[ 2.6414, -0.4669, -0.9202, -1.6336, -1.3981],
[-4.5720, 3.8443, 0.4710, -0.7174, 3.8355],
[-1.9257, 1.7038, 3.0852, 1.2044, -3.3527],
[-2.4430, -3.5152, 3.5496, 2.6212, 1.0257],
[-3.0583, 1.9645, 0.3801, -1.6382, 2.4512],
[-0.0385, 4.4789, -1.7013, -2.0903, 1.3833],
[ 4.2933, 2.6188, -4.6960, 1.1081, -4.2198],
[-0.2039, -0.8337, -4.1525, -4.8108, 2.9020],
[-0.7697, -2.9845, 0.0533, -1.0883, 3.8146],
[ 4.2894, -1.7978, 4.7777, -2.9532, -2.6912],
[ 1.7560, 2.5738, 4.0916, -2.5382, 2.1880],
[-0.7901, 0.7939, -0.8291, 3.7761, -2.7915],
[ 0.6996, -1.9480, -3.8133, 1.9646, 0.6846],
[ 2.0919, 4.1692, -4.0214, 0.7682, -3.9532],
[ 0.8777, 1.8531, 2.7646, 0.7727, -2.5307],
[-4.3693, -4.0111, 0.8608, -0.7973, 3.9314],
[ 0.1338, -0.5540, 4.4676, 0.3379, 2.8601],
[ 0.4134, 4.4440, -0.7308, -2.1561, 4.2330],
[ 3.8522, -0.7508, 0.8077, -4.7752, 4.9831],
[-0.8888, 1.1361, 2.2069, 1.5735, 1.9495],
[ 2.3069, 4.9762, 1.7170, -0.6285, -0.4288],
[ 4.2809, 3.9716, 2.4083, 1.2223, 3.1949],
[-3.4101, -1.9735, -2.4614, -3.1017, 1.3372],
[ 4.0877, 1.6884, -3.6790, -2.6858, 4.5157],
[ 0.5076, 0.9004, -2.8902, 1.1457, 0.3991],
[ 0.3813, -1.4987, 4.4285, 2.9475, -4.1204],
[-1.6288, -0.8885, -0.6103, -0.8161, -4.8144],
[ 4.7792, 3.3270, 4.9538, 3.7228, 4.8665],
[ 0.5611, 2.8787, -3.2977, -1.8508, 4.3932],
[-3.2095, -1.7198, -2.6027, 1.8953, 2.9554],
[ 3.5004, -4.7438, -1.9374, 3.2402, 2.0795],
[-1.9729, -1.6052, 0.2497, -3.3727, -0.0442],
[ 0.8787, -3.2914, 4.2430, 0.6836, -0.4796],
[-3.8108, 4.0674, 4.1874, -0.0842, 3.6559],
[ 4.6606, 0.1376, 0.4861, 3.7161, 1.5840],
[-3.0954, -3.3353, 0.9518, -0.0151, 0.9073],
[ 0.9914, -0.8149, 1.4000, 3.0963, -1.0546],
[ 2.6765, -2.2917, 3.0017, 2.1049, -0.0109],
[ 1.5205, -0.7996, -0.5215, 0.8304, 3.7797],
[ 3.8587, -0.9120, 1.3310, 3.9604, 3.7375],
[-0.3455, -0.6303, 4.7153, -3.9362, 3.7105],
[ 3.4394, 2.6229, -4.8225, -2.1353, 0.9009],
[ 3.8886, -0.8068, 0.0135, -0.6693, 1.3200],
[-4.4276, 2.6852, -2.7280, -3.6135, -1.1380],
[ 2.7119, 0.4588, 2.2637, -4.1454, 0.3942],
[ 2.0721, 1.1302, -1.5541, -0.0272, -3.6377],
[-0.3710, -4.4636, 4.3225, 1.4777, 2.0342],
[-3.5835, 3.9095, 1.6033, 3.8422, 0.7893],
[ 2.1062, 2.0377, -4.2635, 0.7949, 2.4926],
[-1.7191, 4.3357, 0.2551, 1.3467, -2.0817],
[-0.6779, 4.9361, -3.5190, -2.1529, -2.7140],
[ 2.9835, 0.9250, -3.5111, -2.3589, -1.7609],
[-1.5244, 3.7784, 1.1123, -2.7087, -3.9695],
[-4.8867, 2.2938, -0.7644, 2.3565, -4.6017],
[-1.7106, -3.2373, 2.2981, -2.7906, -4.3491],
[ 2.3256, -1.2974, -1.5030, -3.5471, -2.9287],
[ 2.4316, 2.5834, 3.7194, 2.1541, -0.8642],
[ 1.7509, -2.4056, 1.2216, 3.3783, -3.1881],
[-3.5738, -3.5298, 3.5508, -1.5876, -2.2626],
[-2.3320, 3.9580, -1.3648, -3.7359, -2.7323],
[-0.4656, 4.1121, 0.0856, 1.5414, 1.5111],
[ 1.5948, 3.5593, -3.3454, -0.1324, -0.5737],
[ 0.4862, -0.9530, -4.8954, -1.0890, 3.1528],
[-0.9865, 4.7990, -1.2645, 3.3083, -4.8203],
[-4.0652, -2.6096, 2.1667, 1.4777, -0.2609],
[-2.1178, -1.3502, -4.0360, -0.0184, 3.1295],
[-3.6249, 3.6910, 0.2613, 0.8609, -4.8496],
[-4.2934, -3.5707, 2.2766, -2.1208, -1.2594],
[-3.1257, -1.1123, 3.0578, -0.6927, -2.4351],
[-3.7881, 4.2621, -3.6003, 0.6352, -4.2300],
[-2.6432, -2.5242, 2.0149, -1.2237, -0.8432],
[ 3.2253, 3.7056, -0.2699, -3.4172, 3.3371],
[ 3.7036, -2.6085, -2.5541, -0.4703, 3.4452]]
# Datei im Schreibmodus öffnen
with open('200_Zeilen_Daten.csv', 'w', newline='', encoding='utf-8') as datei:
# csv.writer-Objekt erstellen
writer = csv.writer(datei)
# Daten schreiben
writer.writerows(daten)
print(daten)
print("CSV-Datei erfolgreich erstellt.")