leider scheine ich das grundlegende Prinzip der Indices bei Pandas DataFrames nicht zu verstehen.
Folgendes Beispiel:
gegeben ist JSON mit folgender Struktur:
Code: Alles auswählen
<Root>
<Results>
<SeriesId>178</SeriesId>
<SamplingTime>0001-01-01T00:00:00Z</SamplingTime>
<DataPoints>
<Start>2016-04-05T00:00:00Z</Start>
<Value>41.69</Value>
</DataPoints>
<DataPoints>
<Start>2016-04-05T01:00:00Z</Start>
<Value>41.69</Value>
</DataPoints>
Code: Alles auswählen
js = r.json()
df = json_normalize(js, 'DataPoints',['SeriesId'])
df['P'] = df.groupby('SeriesId').get_group(int(input[0]))['Value']
df['Demand'] = df.groupby('SeriesId').get_group(int(input[1]))['Value']
Wie ihr sehen könnt, werden "P" und "Demand" mit einem unterschiedlichem Index versehen. Daher kann ich sie nicht mehr in einem DataFrame vereinen, sondern lediglich "anhängen".Time Value SeriesId P Demand
0 2016-04-05T00:00:00Z 41.69 178 41.69 NaN
1 2016-04-05T01:00:00Z 41.69 178 41.69 NaN
2 2016-04-05T02:00:00Z 41.69 178 41.69 NaN
3 2016-04-05T03:00:00Z 41.69 178 41.69 NaN
4 2016-04-05T04:00:00Z 41.69 178 41.69 NaN
5 2016-04-05T05:00:00Z 41.69 178 41.69 NaN
6 2016-04-05T06:00:00Z 41.78 178 41.78 NaN
7 2016-04-05T07:00:00Z 41.69 178 41.69 NaN
8 2016-04-05T08:00:00Z 34.00 178 34.00 NaN
9 2016-04-05T09:00:00Z 27.47 178 27.47 NaN
10 2016-04-05T10:00:00Z 23.18 178 23.18 NaN
11 2016-04-05T11:00:00Z 22.64 178 22.64 NaN
12 2016-04-05T12:00:00Z 22.64 178 22.64 NaN
13 2016-04-05T13:00:00Z 22.99 178 22.99 NaN
14 2016-04-05T14:00:00Z 31.97 178 31.97 NaN
15 2016-04-05T15:00:00Z 35.01 178 35.01 NaN
16 2016-04-05T16:00:00Z 41.69 178 41.69 NaN
17 2016-04-05T17:00:00Z 42.28 178 42.28 NaN
18 2016-04-05T18:00:00Z 42.28 178 42.28 NaN
19 2016-04-05T19:00:00Z 42.28 178 42.28 NaN
20 2016-04-05T20:00:00Z 41.78 178 41.78 NaN
21 2016-04-05T21:00:00Z 41.69 178 41.69 NaN
22 2016-04-05T22:00:00Z 41.69 178 41.69 NaN
23 2016-04-05T23:00:00Z 34.00 178 34.00 NaN
24 2016-04-06T00:00:00Z 34.00 178 34.00 NaN
25 2016-04-06T01:00:00Z 25.01 178 25.01 NaN
26 2016-04-06T02:00:00Z 25.86 178 25.86 NaN
27 2016-04-06T03:00:00Z 34.00 178 34.00 NaN
28 2016-04-06T04:00:00Z 34.00 178 34.00 NaN
29 2016-04-06T05:00:00Z 41.69 178 41.69 NaN
.. ... ... ... ... ...
Letzter Teil
206 2016-04-08T16:00:00Z 29.58 187 NaN 29.58
207 2016-04-08T17:00:00Z 32.22 187 NaN 32.22
208 2016-04-08T18:00:00Z 31.96 187 NaN 31.96
209 2016-04-08T19:00:00Z 30.66 187 NaN 30.66
210 2016-04-08T20:00:00Z 30.68 187 NaN 30.68
211 2016-04-08T21:00:00Z 29.00 187 NaN 29.00
212 2016-04-08T22:00:00Z 28.45 187 NaN 28.45
213 2016-04-08T23:00:00Z 24.18 187 NaN 24.18
214 2016-04-09T00:00:00Z 23.28 187 NaN 23.28
215 2016-04-09T01:00:00Z 21.84 187 NaN 21.84
216 2016-04-09T02:00:00Z 21.46 187 NaN 21.46
217 2016-04-09T03:00:00Z 21.72 187 NaN 21.72
218 2016-04-09T04:00:00Z 22.42 187 NaN 22.42
219 2016-04-09T05:00:00Z 23.42 187 NaN 23.42
220 2016-04-09T06:00:00Z 27.21 187 NaN 27.21
221 2016-04-09T07:00:00Z 25.12 187 NaN 25.12
222 2016-04-09T08:00:00Z 22.76 187 NaN 22.76
223 2016-04-09T09:00:00Z 22.58 187 NaN 22.58
224 2016-04-09T10:00:00Z 21.83 187 NaN 21.83
225 2016-04-09T11:00:00Z 20.81 187 NaN 20.81
226 2016-04-09T12:00:00Z 19.94 187 NaN 19.94
227 2016-04-09T13:00:00Z 20.35 187 NaN 20.35
228 2016-04-09T14:00:00Z 20.30 187 NaN 20.30
229 2016-04-09T15:00:00Z 22.27 187 NaN 22.27
230 2016-04-09T16:00:00Z 26.91 187 NaN 26.91
231 2016-04-09T17:00:00Z 29.62 187 NaN 29.62
232 2016-04-09T18:00:00Z 31.81 187 NaN 31.81
233 2016-04-09T19:00:00Z 29.56 187 NaN 29.56
234 2016-04-09T20:00:00Z 27.44 187 NaN 27.44
235 2016-04-09T21:00:00Z 24.00 187 NaN 24.00
Wie kann ich es erreichen, das beide den gleichen Index erhalten?
Vielen Dank für eure Hilfe.