Der Koran als Topic Map

Du hast eine Idee für ein Projekt?
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Montag 24. März 2008, 19:43

Blackjack,

das Schließen der Dateien werde ich nach Möglichkeit beherzigen und dein Beispiel habe ich erfolgreich getestet.

Das Stichwort "Histogramm" ist sicher für die Map sehr wichtig.

Untenstehend noch ein paar Zählungen, um mal zu zeigen, was
man alles so machen kann.






>>> sequenz = open("C:\Koran Umschrift.txt","r").read()
>>> len(sequenz)
745103 # Die Koran-Datei, inclusive Leerzeichen, hat eine Länge von 745,103 Zeichen
>>> text = sequenz.split()
>>> len(text)
78464 # Unterteilt man den Text an den Leerzeichen, dann erhält man 78,464 Wörter.
Nach anderen Berechnungen sind dies 78,679 Wörter: http://www.mghamdi.com/AD.pdf

>>> len(set(text))
17648 # Die mehrmals vorkommenden Wörter lassen sich auf 17,648 Token reduzieren
>>> 745103/78464
9
>>> 78464/17648
4 # Durchschnittlich besteht ein Wort aus 9 Zeichen + Leerzeichen und kommt 4 * vor.
Diese beiden Werte sind auf ganze Zahlen auf/abgerundet.

>>> Menge = set(text)

>>> print Menge, # Die (zufällig geordnete) Menge der Token beginnt dann so:

set(['wa-rasuul-un', 'xalq-u', 'sa&y-a-hu', 'tusiim-uuna', 'baddala', 'wa-ta(th)biit-an', '(sh)ajar-in', "wa-saa'at", 'wa-Hamalnaa-hum', 'wa-rasuul-u-hu',.......])
Dr. Kai Borrmann
Sperlingsgasse 1
10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Dienstag 25. März 2008, 15:38

Durch "regular expressions" kann man vom konkreten Wort
abstrahieren und nach bestimmten Wortformen suchen.

Möchte man alle Worte der Form "fa'ala" finden, dann
ist dies eine Folge von Konsonanten, also nicht "^" a, i oder u
(andere kennt das Arabische nicht) und eben den Vokalen.


import re

from nltk_lite.utilities import re_show

text = open("C:\Koran Umschrift.txt","r").read()

re_show("[^aiu][a][^aiu][a][^aiu][a]",text)


suurat-u
l-{baqara}t-i
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Leonidas
Administrator
Beiträge: 16023
Registriert: Freitag 20. Juni 2003, 16:30
Kontaktdaten:

Beitragvon Leonidas » Dienstag 25. März 2008, 15:46

Kai Borrmann hat geschrieben:Durch "regular expressions" kann man vom konkreten Wort
abstrahieren und nach bestimmten Wortformen suchen.

Bei Regular-Expressions ist es Sinnvoll, die Strings als Raw-Strings zu markieren, also ein ``r`` vor die Quotes zu setzen, damit man die Backslashes in den Regulären Ausdrücken vorkommen können, nicht mehrfach escapen muss.
My god, it's full of CARs! | Leonidasvoice vs Modvoice
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Mittwoch 26. März 2008, 11:18

Der automatisierten morphologischen Analyse des Korans gelingt es bisher,

ca. 70 % aller Worte eindeutig einzuordnen.

http://cs.haifa.ac.il/~shuly/publications/quran.pdf



>>> sequenz = open("C:\Koran mit Dubletten.txt","r").read()
>>> text = sequenz.split()
>>> len(text)
99004
>>> 99004-78464
20540


20,540 Fälle müßten also "von Hand" ausgewählt werden.
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Samstag 29. März 2008, 12:24

Setzt man in der Kommandozeile eine Zuordnung zwischen der lateinischen Buchstabenfolge „Allah“
und deren Äquivalent im Unicodesystem, so läßt sich damit im Folgenden operieren:

>>> Allah = u" \uFDF2 "
>>> print Allah
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Samstag 29. März 2008, 20:35

Die oben dargestellte Möglichkeit, Wörter abzuzählen, läßt sich durch die Bedingung if len(word) auf bestimmte Wortlängen einschränken.

for word, count in sorted(histogram.iteritems()):
if len(word) == 3:
print count, word,
print

Es folgt die Auflistung aller Wörter, die drei Zeichen lang sind:

153 &an 110 'am 519 'an 264 'aw 1 'ii 1 'il 344 'in 2 'ti 113 bal 2 bni 6 d&u 1184 fii 2 haa 4 hab 66 hal 180 hum 12 kam 4 kay 8 kun 813 laa 163 lam 59 lan 77 law 1011 maa 368 man 1672 min 120 qad 263 qul 1 qum 1 quu 1 sal 1 tlu 349 yaa 1 zid

Oder wir wollen wissen, wie oft Moses genannt wird:

if word.endswith("usaa"):

1 bi-muusaa 1 li-muusaa 129 muusaa 5 wa-muusaa

Oder Muhammad:

if word.startswith("muHammad"):

2 muHammad-in 3 muHammad-un
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Montag 31. März 2008, 13:49

Nach einigen Umwegen der Bearbeitung folgt hier die geordnete Menge ("sorted set") der in der Ausgangsdatei "qurout.txt" als Eigennamen "ProperName" gekennzeichneten Wörter.

Es ist zu beachten, daß diese Liste einige Fehler enthält: Der Brokat, "istabraq", etwa kann im Koran kein Eigenname sein.

['&aad', '&adn', '&arafaat', '&arim', '&iisaa', '&imraan', '&uzayr', '&uzzaa', "'aHmad", "'aadam", "'aan", "'aazar", "'ayy", "'ayy-i", "'ayyat", "'ayyuub", "'ibliis", "'ibraahiim", "'idriis", "'ilyaas", "'injiil", "'injiil", "'iram", "'isHaaq", "'ismaa&iil", "'israa'iil", "'istabraq", "'uff", '(sh)u&ayb', '(th)amuud', 'Hunayn', 'Safaa', 'Taaguut', 'Taaluut', 'baabil', 'badr', 'bakkat', 'daawuud', 'fir&awn', 'firdaws', 'haamaan', 'haaruun', 'haaruut', 'huud', 'jaaluut', 'jahannam', 'jibriil', 'juudiyy', "l-'aykat",, 'l-laat', 'l-yasa&', 'laZaa', 'llaah', 'luqmaan', 'luuT', "ma'juuj", 'maaruut', 'madyan', 'makkat', 'manaat', 'marwat', 'maryam', 'miSr', 'miikaal', 'muHammad', 'muusaa', 'nuuH', 'qaaruun', 'quray(sh)', 'ramaDan', 'ruum', "saba'", 'saqar', "saynaa'", 'siiniin', 'sulaymaan', 'tawraat', 'tubba&', 'ya&quub', 'ya&uuq', "ya'juuj", 'ya(th)rib', 'yaHyaa', 'yaasiin', 'yaguu(th)', 'yuunus', 'yuusuf', 'zakariyyaa', 'zayd']
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Mittwoch 2. April 2008, 10:14

Ein Beispiel für die Darstellung des Partikels "kallaa" durch eine KWIC "Key Word in Context" Analyse.

text = open("C:\Koran Umschrift.txt","r").read().split()

kwicdict = {}

ngrams = [text[i:i+6] for i in range(len(text)-5)]

for n in ngrams:
if n[2] not in kwicdict:
kwicdict[n[2]] = [n]
else:
kwicdict[n[2]].append(n)

for n in kwicdict['kallaa']:
outstring = ' '.join(n[:2]).rjust(20)
outstring += str(n[2]).center(len(n[2])+6)
outstring += ' '.join(n[3:])
print outstring
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
mkesper
User
Beiträge: 919
Registriert: Montag 20. November 2006, 15:48
Wohnort: formerly known as mkallas
Kontaktdaten:

Beitragvon mkesper » Mittwoch 2. April 2008, 15:37

Python-Code bitte

Code: Alles auswählen

in Tags setzen
, dann wird er lesbarer. :)
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Donnerstag 3. April 2008, 19:12

Mal ein Beispiel für eine KWIC-Analyse:

Der Kontext der ersten fünf Surennamen

&alay-him wa-laa l-Daall-iina suurat-u l-baqarat-i
&alaa l-qawm-i l-kaafir-iina suurat-u 'aal-i
llaah-a la&alla-kum tufliH-uuna suurat-u l-nisaa'-i
bi-kull-i (sh)ay'-in &aliim-un suurat-u l-maa'idat-i
kull-i (sh)ay'-in qadiir-un suurat-u l-'an&aam-i
wa-'inna-hu la-gafuur-un raHiim-un suurat-u l-'a&raaf-i
wa-yusabbiH-uuna-hu wa-la-hu yasjud-uuna suurat-u l-'anfaal-i
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
EyDu
User
Beiträge: 4868
Registriert: Donnerstag 20. Juli 2006, 23:06
Wohnort: Berlin

Beitragvon EyDu » Donnerstag 3. April 2008, 19:35

Nur mal der Interesse halber: Der selbe Kai Borrmann dieses FAZ Artikels?
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Donnerstag 3. April 2008, 20:03

EyDu hat geschrieben:Nur mal der Interesse halber: Der selbe Kai Borrmann dieses FAZ Artikels?


Ja, dieser Artikel der TAZ (nicht FAZ) erwähnt auch mich. Es ging seinerzeit aber nicht um Python. :)
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Dienstag 8. April 2008, 09:29

Mit dem folgenden Beispiel kann man eine Grafik erzeugen,
die erkennbar macht, daß die Suren des Koran nicht, wie oft
zu lesen, nach absteigender Länge sortiert sind.

Dies stimmt generell, aber nicht durchweg; manchmal folgen
längere auf kürzere.



[code=]

from Tkinter import *
root = Tk()

sequenz = open("C:\Koran Umschrift.txt","r").read()
text = sequenz.split()
text

words = ["suurat-u"]

from Tkinter import Canvas

w = Canvas(width=800,height=100*len(words))
text = list(text)
scale = float(800)/len(text)
position = 0
for word in text:
for i in range(len(words)):
x = position * scale
if word == words[i]:
y = i * 100
w.create_line(x,y,x, y+100-1)
position += 1

w.pack()
mainloop()[/code]
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Samstag 12. April 2008, 11:13

Hier ist ein erster Versuch der Visualisierung zu finden:

http://user.baden-online.de/~pjanssen/t ... index.html
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin
Benutzeravatar
Kai Borrmann
User
Beiträge: 29
Registriert: Sonntag 7. Januar 2007, 09:11
Wohnort: Berlin

Beitragvon Kai Borrmann » Freitag 9. Mai 2008, 15:46

Über den ISO-Standard zur Topic Map haben wir uns noch keine verschärften Gedanken gemacht.

"Topic map" ist zunächst mal ein Bezugsrahmen, über den auf dem folgenden, für dieses Projekt gegründeten, Blog auch diskutiert werden kann:

http://www.raunaq.info-a.googlepages.com/

Über Besucher freuen wir uns!
Dr. Kai Borrmann

Sperlingsgasse 1

10178 Berlin

Wer ist online?

Mitglieder in diesem Forum: 0 Mitglieder