Konstruktion eines 'echten' Bildes zu wagen.
Um 'echte' Daten zu erhalten , verwende ich ein erstes Programm.
neuronales Netzwerkes.
Mit diesen Daten werde ich das gewünschte Bild generieren.
Welche Informationen kann ich dem Bild entnehmen. ?????
Code: Alles auswählen
[
# Einfaches neuronales Netzwerk
import torch
import torch.nn as nn
import torch.optim as optim
print("Testung der Verlust-Funktion")
# Dummy dataset
X = torch.rand((100, 10))
print("DATEN ziegen von X :",X)
y = torch.randint(0, 2, (100,))
# Define the model
class SimpleModel(nn.Module):
def __init__(self):
super(SimpleModel, self).__init__()
self.fc1 = nn.Linear(10, 5)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(5, 2)
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
return x
# Instantiate the model, loss function, and optimizer
model = SimpleModel()
#criterion: legt fest, welche Funktion verwendet wird, um die Güte einer Aufteilung (engl. Split) an #einem Knoten zu messen.
#Als Kriterium kann entweder "gini" oder "entropy" verwendet.
criterion = nn.CrossEntropyLoss()
print("Verlust-Funktion zeigt an :", criterion)
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Training loop
epochs = 100
for epoch in range(epochs):
# Forward pass
outputs = model(X)
loss = criterion(outputs, y)
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Print the loss every 10 epochs
if (epoch + 1) % 10 == 0:
print(f'Epoch [{epoch + 1}/{epochs}], Loss: {loss.item():.4f}')
# Test the trained model
with torch.no_grad():
test_outputs = model(X)
predicted_classes = torch.argmax(test_outputs, dim=1)
accuracy = torch.sum(predicted_classes == y).item() / len(y)
print(f'Test Accuracy: {accuracy * 100:.2f}%')
###############################################
mport numpy as np
import matplotlib.pyplot as plt
import torch
import scipy
from scipy import ndimage
tensor = ([[2.9222e-01, 6.8663e-01, 4.1914e-01, 3.2479e-01, 6.0228e-01, 3.2373e-01,
2.9539e-01, 8.4033e-01, 9.5505e-01, 7.0594e-01],
[5.5544e-01, 8.2971e-01, 7.2241e-01, 9.7464e-01, 5.7786e-01, 5.0167e-01,
8.6048e-01, 6.8625e-01, 4.0596e-01, 7.5086e-01],
[3.1874e-01, 6.3524e-01, 2.6089e-01, 9.6443e-01, 9.0779e-01, 2.1823e-01,
5.6332e-01, 5.1251e-01, 4.7989e-03, 7.4893e-01],
[5.9204e-01, 4.4428e-01, 9.6443e-01, 5.8609e-01, 5.0464e-01, 8.8172e-01,
6.6654e-01, 7.8601e-01, 9.4057e-01, 2.2864e-01],
[2.5650e-01, 8.7065e-01, 9.0367e-01, 4.7278e-01, 9.3282e-01, 5.8669e-01,
5.9083e-01, 2.1389e-01, 9.1218e-01, 9.9553e-01],
[6.6305e-01, 2.9749e-01, 3.6908e-01, 6.4292e-01, 7.5590e-01, 1.5389e-01,
3.5624e-02, 7.3437e-01, 3.8163e-01, 2.7315e-01],
[1.7760e-01, 4.4198e-01, 3.3210e-01, 6.0096e-01, 3.0625e-01, 5.1850e-01,
7.1673e-01, 8.7827e-02, 3.5141e-01, 3.0929e-02],
[5.8477e-01, 2.1883e-01, 4.3152e-01, 6.9485e-01, 7.1417e-01, 6.9463e-01,
3.4283e-01, 2.7907e-01, 2.6518e-01, 6.6480e-01],
[8.8045e-01, 9.5399e-01, 5.3331e-01, 2.9123e-01, 5.8292e-01, 3.6120e-01,
6.8459e-01, 7.9680e-01, 8.6240e-01, 1.5592e-01],
[9.2280e-01, 9.9376e-01, 8.4381e-01, 6.5200e-01, 3.1540e-01, 4.5797e-01,
4.1886e-02, 6.3258e-01, 9.5808e-01, 5.0344e-02],
[8.8334e-02, 8.9776e-01, 3.4384e-01, 5.0235e-01, 3.1382e-01, 7.9876e-01,
2.0493e-01, 6.4204e-02, 4.4943e-02, 8.7843e-01],
[8.0665e-01, 8.3744e-01, 3.3685e-01, 2.9427e-01, 1.1306e-01, 4.1694e-01,
7.1008e-01, 8.7323e-01, 7.6534e-01, 2.8780e-01],
[7.1148e-01, 3.8040e-02, 3.6555e-01, 9.6701e-01, 5.9422e-02, 2.0057e-01,
6.1941e-01, 3.7715e-01, 3.0884e-01, 4.1637e-01],
[6.2487e-01, 4.1928e-01, 5.1479e-01, 3.3076e-01, 8.2149e-01, 7.2501e-01,
1.2322e-01, 1.3032e-02, 3.0238e-01, 7.9741e-01],
[8.6331e-01, 6.9823e-02, 7.6358e-01, 3.1601e-01, 4.5241e-01, 8.1125e-01,
3.0014e-01, 5.6941e-01, 4.5805e-01, 8.5795e-01],
[7.0448e-01, 7.7074e-01, 1.5635e-01, 7.9033e-02, 6.1231e-01, 5.8012e-01,
2.8157e-01, 4.6207e-01, 7.5831e-01, 1.8134e-01],
[6.1088e-01, 5.3516e-01, 2.2604e-01, 9.7685e-01, 5.2848e-01, 1.5712e-01,
1.7187e-01, 5.6004e-01, 4.1409e-01, 9.8594e-02],
[6.6292e-01, 8.8074e-01, 3.0678e-02, 7.8093e-01, 1.9115e-01, 7.8609e-01,
4.3511e-01, 8.1887e-01, 4.5660e-01, 1.9084e-02],
[7.5283e-01, 9.7684e-02, 9.4945e-01, 5.6791e-01, 7.0553e-02, 6.4049e-01,
3.0040e-01, 8.1810e-01, 4.3042e-01, 4.4683e-01],
[5.3737e-01, 1.3268e-02, 7.1108e-02, 8.8229e-01, 4.0202e-02, 4.7219e-01,
2.5212e-01, 8.1536e-01, 3.5650e-02, 2.8261e-01],
[4.6611e-01, 6.6067e-01, 1.5575e-01, 5.3506e-01, 2.2433e-01, 1.5486e-01,
3.0141e-01, 7.6119e-01, 2.7229e-02, 3.6025e-01],
[1.0992e-01, 4.2459e-01, 4.4045e-01, 2.2743e-01, 8.0854e-01, 6.4810e-02,
6.3009e-01, 5.8266e-01, 5.5659e-01, 1.1392e-01],
[7.6072e-01, 9.7096e-01, 5.1644e-01, 2.1967e-01, 3.2724e-01, 2.0654e-01,
7.4081e-01, 1.5519e-01, 2.1602e-01, 9.6006e-01],
[5.4901e-01, 1.3773e-01, 5.7840e-01, 8.8988e-01, 8.4628e-01, 9.5022e-01,
2.4751e-01, 9.8896e-01, 2.0124e-01, 8.7620e-01],
[5.8564e-01, 5.1860e-02, 3.9538e-01, 7.0925e-01, 7.7490e-03, 5.5837e-01,
2.8165e-01, 5.3774e-01, 2.6431e-01, 9.9645e-02],
[8.6033e-01, 3.3721e-01, 8.3283e-01, 2.5277e-02, 7.9154e-01, 8.4806e-01,
5.5159e-01, 6.9289e-01, 1.6528e-01, 8.0464e-01],
[5.2457e-01, 9.0078e-01, 2.1915e-01, 2.5751e-01, 9.0211e-01, 6.7849e-01,
1.1509e-01, 7.1387e-01, 8.6969e-01, 2.7644e-01],
[5.5972e-02, 1.1983e-01, 4.9041e-01, 9.9400e-01, 8.8517e-01, 1.4428e-02,
3.7697e-01, 6.4687e-01, 3.8596e-01, 9.6571e-01],
[6.8951e-01, 8.5334e-01, 8.6565e-02, 1.8547e-02, 6.5070e-02, 8.7672e-01,
4.1221e-01, 4.4641e-01, 2.3863e-01, 9.1675e-01],
[4.9606e-01, 2.6298e-02, 6.4699e-01, 4.2721e-01, 1.4803e-01, 6.9795e-01,
2.8151e-01, 7.6911e-01, 6.1303e-01, 8.5187e-01],
[9.8147e-01, 7.0773e-01, 7.8670e-01, 1.4692e-01, 6.0948e-01, 3.5310e-02,
5.1172e-02, 1.1099e-01, 6.9157e-01, 1.4322e-01],
[9.0609e-02, 3.0412e-01, 9.8467e-01, 3.0651e-01, 2.7855e-01, 7.7115e-01,
4.1309e-01, 1.9661e-01, 2.8331e-01, 2.1097e-01],
[1.9634e-02, 5.7923e-01, 1.4618e-01, 3.9010e-01, 9.6408e-01, 5.4127e-01,
2.0997e-01, 6.0890e-02, 8.7565e-01, 1.7133e-02],
[5.6985e-01, 5.7799e-01, 4.2893e-01, 5.1398e-02, 2.4685e-01, 1.7251e-01,
6.1724e-01, 3.6940e-01, 6.5831e-01, 5.2967e-01],
[3.4606e-01, 9.5751e-01, 7.6821e-01, 9.7272e-01, 4.7985e-01, 1.7994e-01,
4.4263e-01, 6.9897e-01, 5.4709e-02, 6.3397e-02],
[1.6931e-01, 5.5858e-01, 4.3684e-01, 6.7865e-02, 3.0036e-01, 9.5423e-01,
7.6249e-01, 5.9683e-01, 6.9628e-01, 9.4078e-01],
[2.7949e-01, 4.6483e-01, 1.0771e-01, 3.4711e-02, 6.8404e-01, 4.5241e-01,
4.5303e-02, 3.5591e-01, 4.1435e-02, 3.1528e-01],
[9.0869e-01, 7.4594e-01, 1.1349e-01, 7.7406e-01, 1.1500e-01, 1.7778e-01,
9.8661e-01, 4.3592e-01, 5.1381e-01, 9.2029e-01],
[1.7512e-01, 3.0051e-01, 6.4638e-01, 4.4352e-02, 2.0955e-02, 3.1129e-01,
4.8915e-01, 4.7555e-01, 1.6702e-01, 4.6281e-01],
[9.5157e-01, 7.7810e-02, 2.7575e-01, 9.7361e-02, 4.6171e-01, 9.5497e-01,
5.7111e-02, 7.3816e-01, 8.5530e-01, 1.3710e-01],
[3.9048e-01, 5.5571e-01, 2.9871e-01, 9.1940e-01, 4.0984e-01, 1.7032e-01,
1.3171e-02, 3.8254e-01, 3.9833e-01, 8.5882e-01],
[5.3493e-01, 2.0766e-01, 4.3932e-01, 8.3939e-01, 6.8860e-01, 1.9726e-01,
9.0481e-01, 7.1256e-01, 5.1281e-01, 2.8908e-02],
[3.8967e-01, 1.2540e-01, 5.5113e-01, 2.9233e-01, 3.2754e-01, 3.3044e-01,
6.6803e-01, 6.6371e-01, 1.6859e-02, 7.6549e-01],
[1.0511e-01, 2.3739e-01, 8.6655e-01, 6.5663e-01, 9.1280e-01, 3.7999e-01,
2.6827e-01, 1.3552e-01, 7.9422e-01, 3.4088e-01],
[9.3246e-01, 5.9042e-01, 9.9210e-01, 1.4655e-01, 1.1316e-01, 9.7569e-01,
9.4429e-01, 8.1775e-01, 5.1455e-01, 3.7566e-01],
[9.6137e-01, 4.3157e-01, 2.1667e-01, 7.8126e-01, 8.5581e-01, 4.0715e-03,
5.5497e-01, 9.8247e-01, 4.8944e-02, 2.1780e-02],
[8.2578e-01, 3.0677e-01, 8.0798e-01, 1.3925e-01, 4.6488e-01, 3.7848e-01,
4.0705e-01, 4.3679e-01, 1.7203e-01, 3.6747e-01],
[2.1734e-01, 9.3373e-01, 6.6016e-01, 4.6801e-01, 2.2420e-01, 3.2868e-01,
6.1461e-01, 1.7236e-01, 7.9881e-01, 2.5230e-01],
[2.9836e-01, 2.5506e-01, 8.7575e-01, 8.3300e-01, 9.6389e-01, 2.1767e-01,
1.3653e-01, 3.5681e-01, 3.7055e-01, 4.3991e-01],
[9.9734e-01, 6.0806e-01, 5.2164e-01, 3.7105e-02, 3.5561e-01, 4.1590e-01,
5.0681e-01, 6.7795e-01, 5.1055e-01, 8.3642e-01],
[1.7313e-01, 7.0428e-02, 8.2351e-01, 8.7569e-01, 4.4394e-01, 5.2152e-01,
5.7196e-01, 3.4497e-01, 5.2469e-01, 4.9370e-01],
[8.3869e-01, 5.0104e-01, 8.1875e-01, 6.9142e-01, 3.9997e-01, 2.6710e-01,
9.5983e-01, 3.1358e-01, 3.6192e-01, 3.6725e-01],
[2.5805e-01, 8.9373e-01, 2.2295e-01, 6.3752e-01, 7.0348e-01, 6.6524e-01,
9.3193e-01, 1.1488e-01, 4.7194e-01, 4.4708e-01],
[3.3909e-01, 7.2410e-01, 3.2524e-01, 8.7411e-02, 2.4941e-02, 9.3732e-01,
1.9455e-01, 1.5489e-01, 2.9837e-01, 8.2482e-02],
[2.2607e-01, 1.6468e-01, 8.4908e-01, 3.1397e-01, 3.9330e-01, 3.1672e-01,
8.2573e-01, 6.3221e-02, 8.0053e-01, 9.0150e-01],
[8.7152e-01, 1.4332e-01, 9.6870e-01, 4.4784e-01, 3.9655e-01, 7.6710e-01,
8.5161e-01, 6.4302e-01, 3.9614e-01, 2.9665e-01],
[7.0411e-01, 1.6245e-01, 8.8512e-02, 5.9223e-01, 5.1323e-01, 6.7313e-01,
9.6079e-01, 7.7948e-01, 2.7065e-01, 8.6823e-01],
[1.9587e-01, 9.3866e-01, 5.2729e-01, 3.5963e-01, 7.1215e-01, 9.3342e-01,
1.2569e-01, 3.0992e-01, 3.2552e-01, 8.9278e-01],
[1.4818e-01, 1.4275e-01, 5.4856e-01, 9.9537e-01, 1.0662e-01, 8.6988e-01,
4.9906e-02, 3.8861e-01, 2.0084e-01, 2.5154e-01],
[7.7792e-01, 1.3703e-01, 7.3264e-01, 2.9706e-01, 4.5026e-01, 7.4389e-01,
7.2757e-03, 2.6973e-01, 3.2169e-01, 5.6198e-01],
[2.5568e-01, 7.8891e-01, 1.3368e-01, 3.7920e-01, 7.5319e-01, 7.7325e-01,
7.9872e-01, 4.1685e-01, 9.9097e-01, 8.5145e-02],
[5.1568e-01, 8.6595e-01, 7.4815e-01, 1.6975e-01, 8.7473e-01, 2.7133e-01,
5.3170e-01, 2.5603e-02, 4.9775e-01, 7.2825e-01],
[1.4931e-01, 2.1399e-01, 3.5575e-01, 7.9274e-01, 9.0562e-01, 8.4352e-01,
7.4092e-02, 8.7944e-01, 9.6758e-01, 9.5010e-01],
[7.9526e-01, 3.4426e-01, 5.4267e-01, 2.8139e-01, 9.6069e-01, 9.9585e-01,
9.7355e-02, 6.7790e-01, 1.0186e-01, 8.7978e-01],
[5.6790e-02, 8.7512e-01, 3.6122e-01, 6.6688e-01, 2.7828e-01, 6.3765e-01,
3.0436e-01, 7.8392e-01, 2.5085e-01, 2.9563e-01],
[8.6982e-01, 7.5486e-01, 6.1933e-01, 6.6229e-01, 2.6602e-01, 9.2379e-01,
4.8884e-01, 1.9995e-01, 4.5762e-01, 5.4512e-02],
[2.2080e-01, 6.9508e-01, 9.7425e-01, 8.4476e-01, 2.2368e-01, 2.3680e-01,
4.9887e-01, 5.9969e-01, 2.2045e-01, 6.3384e-01],
[4.3330e-01, 7.2166e-03, 7.9777e-01, 9.0748e-01, 8.5832e-01, 7.9568e-02,
1.6630e-01, 6.5773e-01, 4.5499e-01, 7.9068e-02],
[5.2761e-01, 7.6765e-01, 5.1973e-02, 9.6698e-01, 1.4936e-02, 1.5769e-01,
2.7398e-01, 6.1970e-01, 3.5983e-01, 2.8027e-01],
[3.1966e-02, 5.2905e-01, 5.1649e-01, 3.4139e-01, 6.6388e-01, 9.7574e-01,
4.7287e-01, 9.9288e-01, 7.7020e-01, 2.2221e-01],
[2.5633e-01, 3.1520e-01, 7.1653e-01, 6.4355e-01, 9.8392e-02, 3.7037e-02,
2.8539e-01, 9.4372e-01, 3.4244e-01, 4.8553e-02],
[8.9574e-01, 4.7491e-01, 6.6274e-03, 5.5411e-01, 9.4067e-01, 6.1803e-01,
8.2746e-01, 9.1990e-01, 8.6414e-01, 3.6938e-01],
[1.3779e-01, 8.5399e-01, 6.7845e-01, 6.7704e-01, 9.6094e-02, 3.0603e-01,
2.8175e-01, 6.3975e-01, 2.0144e-01, 3.1131e-01],
[1.6600e-01, 1.0541e-01, 1.6036e-01, 8.1871e-01, 8.5597e-02, 7.5808e-01,
5.5306e-01, 3.9933e-01, 8.3156e-01, 5.2096e-02],
[6.5191e-01, 6.7186e-01, 4.7698e-01, 8.3654e-01, 6.9990e-02, 9.3142e-01,
7.4296e-01, 8.8787e-01, 8.6272e-02, 8.9171e-01],
[6.0749e-01, 5.3081e-01, 7.6772e-01, 7.3041e-01, 5.5577e-01, 9.3322e-01,
4.9645e-01, 6.7960e-01, 6.0921e-01, 2.4096e-01],
[2.8267e-01, 8.2379e-01, 9.5513e-01, 6.6809e-01, 4.7172e-01, 7.0887e-01,
5.7371e-01, 6.2902e-01, 5.7224e-01, 4.0719e-01],
[8.5748e-01, 4.4690e-01, 9.7979e-01, 4.8270e-01, 6.6564e-01, 8.4580e-01,
2.9920e-01, 8.7938e-01, 4.1206e-01, 8.8065e-01],
[2.1827e-01, 6.1685e-01, 6.2416e-01, 1.1625e-01, 9.3612e-01, 3.8182e-01,
8.6648e-01, 7.7634e-01, 9.5924e-01, 8.4979e-01],
[4.5904e-01, 2.8375e-01, 1.7923e-01, 1.0265e-01, 2.6487e-01, 8.7427e-01,
6.3931e-01, 9.2185e-01, 1.8814e-01, 4.6688e-01],
[9.3432e-01, 6.3559e-01, 8.5197e-01, 3.2361e-01, 2.0056e-01, 9.2445e-01,
2.2350e-01, 5.8269e-01, 8.3440e-01, 6.6469e-02],
[5.6964e-01, 2.2937e-01, 2.0973e-01, 1.2911e-01, 8.2727e-01, 1.5506e-01,
4.5108e-01, 5.3088e-01, 4.7621e-02, 8.6652e-01],
[8.2846e-01, 7.8891e-01, 1.7300e-01, 8.8942e-01, 8.6031e-02, 8.6696e-01,
7.5673e-01, 9.5832e-01, 7.1232e-01, 6.4838e-04],
[6.0151e-01, 5.5573e-01, 8.8099e-01, 5.4313e-01, 4.8009e-01, 4.9952e-01,
8.4308e-01, 6.0059e-02, 7.7979e-01, 8.1841e-01],
[3.5385e-01, 8.4562e-01, 6.6722e-01, 8.6063e-01, 4.5924e-01, 3.0050e-01,
7.8364e-01, 8.7273e-01, 6.4574e-01, 4.5296e-01],
[2.9081e-01, 1.9456e-01, 7.4062e-01, 4.6530e-01, 1.5013e-01, 1.4595e-01,
2.7953e-01, 1.4313e-01, 6.1942e-01, 7.0994e-01],
[4.6606e-01, 4.2371e-01, 8.6644e-01, 9.2781e-01, 7.9696e-01, 1.9017e-01,
6.8353e-02, 9.0217e-01, 5.1970e-01, 2.1213e-01],
[1.8870e-01, 4.3505e-01, 9.7652e-01, 9.6948e-01, 8.3129e-01, 2.8473e-01,
8.9527e-01, 2.7648e-01, 8.3105e-01, 7.3924e-01],
[4.9153e-01, 6.1254e-01, 8.4064e-01, 3.6957e-01, 3.9874e-01, 8.1734e-02,
5.4617e-01, 5.0426e-01, 8.0616e-01, 5.5730e-01],
[1.1220e-01, 5.9337e-01, 5.5275e-01, 3.7697e-01, 7.0846e-01, 8.7905e-02,
4.3779e-02, 9.2227e-01, 2.5081e-01, 9.7404e-02],
[7.7806e-01, 1.7218e-01, 2.5968e-01, 8.5514e-01, 2.8270e-01, 2.8551e-01,
8.9627e-01, 8.6489e-01, 3.4114e-01, 2.4419e-01],
[5.2629e-01, 4.1494e-01, 4.0478e-01, 8.4493e-01, 8.1986e-01, 5.0504e-01,
5.1902e-01, 5.4134e-01, 3.3008e-01, 1.2345e-01],
[7.1760e-01, 9.4789e-01, 2.4671e-02, 5.8957e-01, 7.1790e-01, 9.7698e-02,
9.5448e-02, 2.6961e-02, 5.9844e-01, 3.2093e-01],
[5.0963e-01, 3.1826e-01, 1.5183e-01, 9.2145e-01, 7.3766e-01, 3.2501e-01,
9.5764e-01, 1.9023e-01, 3.4118e-04, 1.4548e-01],
[5.1828e-01, 6.0104e-02, 6.9069e-02, 3.2410e-01, 7.0291e-01, 5.5621e-01,
7.7059e-02, 1.6506e-01, 7.8744e-01, 6.4652e-01],
[6.0191e-01, 4.2128e-01, 3.7009e-01, 1.9005e-01, 2.8042e-01, 7.6023e-02,
8.4108e-01, 6.8998e-01, 9.4244e-02, 2.9001e-01],
[7.4080e-01, 9.3798e-01, 3.5967e-01, 3.0795e-01, 7.2310e-01, 6.8691e-02,
9.4789e-01, 3.0437e-01, 1.4640e-01, 3.0191e-01],
[9.0145e-02, 9.6858e-01, 2.8762e-01, 2.7806e-01, 1.5026e-01, 8.2724e-01,
9.2107e-01, 6.7317e-01, 3.8515e-01, 1.4702e-01],
[6.8593e-01, 8.4820e-02, 6.7524e-01, 2.0206e-01, 8.7099e-01, 4.8546e-03,
4.6318e-01, 5.7283e-01, 3.3211e-01, 9.3403e-01],
[2.9909e-01, 5.2113e-01, 2.8686e-01, 4.7439e-01, 2.9226e-02, 7.4341e-02,
6.8179e-01, 2.6745e-01, 5.1926e-01, 7.6659e-01]])
fig = plt.figure()
ax1 = fig.add_subplot(121)
# Bilinear interpolation - this will look blurry
#
#'nearest' interpolation - faithful but blocky
plt.imshow(tensor,cmap='spring',)
plt.show()
/code]