SyntaxError bei LabelEncoder

Wenn du dir nicht sicher bist, in welchem der anderen Foren du die Frage stellen sollst, dann bist du hier im Forum für allgemeine Fragen sicher richtig.
Antworten
CodeIt
User
Beiträge: 26
Registriert: Mittwoch 13. September 2017, 06:10

Dienstag 26. Februar 2019, 16:09

Hallo,

ich bekomme für folgende Zeile immer einen SyntaxError

Code: Alles auswählen

le = LabelEncoder()
Hat jemand eine Idee woran das liegen könnte? Ich verwende Python 3.5 .
Anbei noch den kompletten Code

Code: Alles auswählen

# import the necessary packages
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import LinearSVC
from sklearn.metrics import classification_report

#from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split

from imutils import paths #a set of image processing convenience functions
import numpy as np
import argparse
import imutils
import cv2
import os

def extract_color_histogram(image, bins=(8, 8, 8)):
	# extract a 3D color histogram from the HSV color space using
	# the supplied number of `bins` per channel
	hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
	hist = cv2.calcHist([hsv], [0, 1, 2], None, bins,
		[0, 180, 0, 256, 0, 256])
 
	# handle normalizing the histogram if we are using OpenCV 2.4.X
	if imutils.is_cv2():
		hist = cv2.normalize(hist)
 
	# otherwise, perform "in place" normalization in OpenCV 3 (I
	# personally hate the way this is done
	else:
		cv2.normalize(hist, hist)
 
	# return the flattened histogram as the feature vector
	return hist.flatten()


# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--dataset", required=True,
	help="path to input dataset")
args = vars(ap.parse_args())
 
# grab the list of images that we'll be describing
print("[INFO] describing images...")
imagePaths = list(paths.list_images(args["dataset"]))
 
# initialize the data matrix and labels list
data = []
labels = []

# loop over the input images
for (i, imagePath) in enumerate(imagePaths):
	# load the image and extract the class label (assuming that our
	# path as the format: /path/to/dataset/{class}.{image_num}.jpg
	image = cv2.imread(imagePath)
	label = imagePath.split(os.path.sep)[-1].split(".")[0]
 
	# extract a color histogram from the image, then update the
	# data matrix and labels list
	hist = extract_color_histogram(image)
	data.append(hist)
	labels.append(label)
 
	# show an update every 1,000 images
	if i > 0 and i % 1000 == 0:
		print("[INFO] processed {}/{}".format(i, len(imagePaths))

# encode the labels, converting them from strings to integers
le = LabelEncoder()
labels = le.fit_transform(labels)


# partition the data into training and testing splits, using 75%
# of the data for training and the remaining 25% for testing
print("[INFO] constructing training/testing split...")
(trainData, testData, trainLabels, testLabels) = train_test_split(
	np.array(data), labels, test_size=0.25, random_state=42)
 
# train the linear regression clasifier
print("[INFO] training Linear SVM classifier...")
model = LinearSVC()
model.fit(trainData, trainLabels)
 
# evaluate the classifier
print("[INFO] evaluating classifier...")
predictions = model.predict(testData)
print(classification_report(testLabels, predictions,
	target_names=le.classes_))                
Vielen Dank im voraus
Benutzeravatar
__blackjack__
User
Beiträge: 4009
Registriert: Samstag 2. Juni 2018, 10:21
Wohnort: 127.0.0.1
Kontaktdaten:

Dienstag 26. Februar 2019, 16:11

@CodeIt: Zähl mal in der letzte Codezeile davor die Klammern.
“Programmieren ist ein Hobby, bei dem es einen riesigen Baumarkt mit quasi jedem Bauteil und Werkzeug und fast immer kostenlos gibt. Ob man deswegen in der Lage ist einen Kölner Dom zu bauen ist eine andere Frage. Arbeit steckt auf jeden Fall drin ;).” — Greebo, forum.ubuntuusers.de
CodeIt
User
Beiträge: 26
Registriert: Mittwoch 13. September 2017, 06:10

Dienstag 26. Februar 2019, 16:21

oh ja, Danke.
Antworten